New downstream synthetic route of 153034-88-9

The synthetic route of 153034-88-9 has been constantly updated, and we look forward to future research findings.

Application of 153034-88-9 , The common heterocyclic compound, 153034-88-9, name is 2-Chloro-4-iodo-3-methylpyridine, molecular formula is C6H5ClIN, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

The mixture of 1.0 g of 2-chloro-4-iodo picoline, 84 mg of palladium acetate, 218 mg of 1,1′-bisdiphenylphosphino ferrocene, 990 mg of sodium hydrogen carbonate, 10 mL of N,N-dimethylformamide, and 10 ml of methanol, was stirred overnight in a carbon monoxide atmosphere at 80C. After cooling the reaction mixture back to room temperature, water and a saturated aqueous solution of sodium hydrogen carbonate were added thereto, and extracted with ethyl acetate. The organic layer was washed with saturated brine, and then dried over anhydrous sodium sulfate. The insolubles were filtered, the filtrate was concentrated under reduced pressure, and then the obtained residue was purified by silica gel column chromatography to obtain 522 mg of 2-chloro-3-methylisonicotinic acid methyl ester [48-1] as a colorless oily product.

The synthetic route of 153034-88-9 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; BANYU PHARMACEUTICAL CO., LTD.; EP1790650; (2007); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Analyzing the synthesis route of Ethyl 2-chloronicotinate

According to the analysis of related databases, 1452-94-4, the application of this compound in the production field has become more and more popular.

Electric Literature of 1452-94-4, As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 1452-94-4, name is Ethyl 2-chloronicotinate, molecular formula is C8H8ClNO2, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.

In a 500 mL dry round bottom flask with reflux condenser and magnetic stirrer was placed with 2-chloro-3-ethyl nicotinate (40.0 g, 215.5 mmol) in methanol (200 mL). CH3ONa in methanol (25%, 65 mL, 301.7 mmol) was added slowly and the reaction mixture was refluxed for 16 h. The reaction was cooled to rt, quenched by addition of a saturated aqueous NH4Cl solution. The aqueous mixture was extracted with ethyl acetate. The combined organic layers were washed well with water, brine, dried over Na2SO4 and concentrated to give 35 g of 2-methoxy-3-methyl nicotinate with 97% yield. Sodium hydride (60% in oil, 9.21 g, 230.3 mmol) was added to a dry 500 mL round bottom flask followed by 100 mL DMF. 4-Methoxyacetophenone (31.45 g, 209.44 mmol) in 50 mL dry DMF was added dropwise at 0 C. over 30 min. The reaction mixture was stirred for 1 h at rt. 2-Methoxynicotinic acid methyl ester (35 g, 209.44 mmol) was dissolved in 50 mL dry DMF and added slowly, keeping the temperature at 0 C. The mixture was stirred for 16 h at rt, then quenched by addition of a saturated aqueous NH4Cl solution and diluted with water. The solid was filtered off, washed with water and dried to give 56.7 g diketo product in 95% yield.

According to the analysis of related databases, 1452-94-4, the application of this compound in the production field has become more and more popular.

Reference:
Patent; RVX Therapeutics Inc.; McLure, Kevin G.; Young, Peter R.; US2013/281396; (2013); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Analyzing the synthesis route of 885168-04-7

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 885168-04-7, 5-Bromo-3-chloropicolinaldehyde.

Application of 885168-04-7, The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 885168-04-7, name is 5-Bromo-3-chloropicolinaldehyde. This compound has unique chemical properties. The synthetic route is as follows.

Conc. sulfuric acid (5.0 mL) was added to an ice-cold (0C) mixture of 5-bromo-3-chloropicolinaldehyde(5 g, 22.7 mmol, 1 eq) and 3-butene-1-ol (4.1 mL, 45.5 mmol, 2 eq) and the mixture was stirred for 16 h at RT. The reaction mass was poured into crushed ice, neutralized by addition of solid NaHCO3, extracted with EtOAc (2×1 00 mL) and the organic layer was washed with brine (150 ml). Combined organic layer was dried over anhydr. Na2SO4, filtered and the solvent was evaporated under reduced pressure to get crude mass which was then purified by combiflash CC to afford 2-(5-bromo-3-chloropyridin-2-yl)tetra-hydro-2H-pyran-4-ol (1.1 g, 17%) as colorless oil.

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 885168-04-7, 5-Bromo-3-chloropicolinaldehyde.

Reference:
Patent; GRUeNENTHAL GMBH; SCHUNK, Stefan; REICH, Melanie; JAKOB, Florian; DAMANN, Nils; HAURAND, Michael; KLESS, Achim; ROGERS, Marc; SUTTON, Kathy; WO2015/158427; (2015); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

The important role of 61494-55-1

The synthetic route of 61494-55-1 has been constantly updated, and we look forward to future research findings.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 61494-55-1, name is 2-(2-Chloropyridin-3-yl)acetic acid, the common compound, a new synthetic route is introduced below. SDS of cas: 61494-55-1

(Step 5) To a solution of the compound (3.40 g) obtained in step 4, N-benzylethanolamine (4.53 g) and HOBt·H2O (4.60 g) in DMF (50 mL) was added WSC·HCl (5.80 g), and the mixture was stirred at room temperature for 4 days. The reaction mixture was poured into water, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated aqueous sodium hydrogen carbonate solution and brine, and concentrated. The residue was purified by silica gel column chromatography (solvent gradient; 80% ethyl acetate/hexane ? 2% methanol/ethyl acetate) to give N-benzyl-2-(2-chloropyridin-3-yl)-N-(2-hydroxyethyl)acetamide (6.20 g, 100%) as a pale-yellow oil. 1H-NMR(CDCl3): delta 3.49-3.98(6H,m), 4.69-4.71(2H,m), 7.20-7.46(6H,m), 7.63-7.69(1H,m), 8.30(1H,dd,J=4.8,1.8Hz)

The synthetic route of 61494-55-1 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; Takeda Pharmaceutical Company Limited; EP2018863; (2009); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

New learning discoveries about 2,6-Bis(benzyloxy)-3-bromopyridine

Statistics shows that 16727-47-2 is playing an increasingly important role. we look forward to future research findings about 2,6-Bis(benzyloxy)-3-bromopyridine.

Application of 16727-47-2, With the rapid development and complex challenges of chemical substances, the synthesis of new drugs is usually one of the most effective ways to increase yield.16727-47-2, name is 2,6-Bis(benzyloxy)-3-bromopyridine, molecular formula is C19H16BrNO2, molecular weight is 370.2398, as common compound, the synthetic route is as follows.

To the stirred solution of 2,6-bis(benzyloxy)-3-bromopyridine (16-1) (112.0 mg, 302 mumol) in Dioxane and water (7.5 mL) was added Pyridine-4-boronic acid 41-1 (42.1 mg, 453 mumol) and Potassium Phosphate (139 mg, 604 mumol). The reaction was degassed for 10 minutes and PdCl2(dppf)-DCM (24.6 mg, 30.2 mumol) was added. The reaction was refluxed at 90C for overnight. Reaction progress was monitored by TLC. Upon completion, the reaction was diluted with water and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulphate and evaporated in vacuo. The product was purified by silica gel flash chromatography (4 g Isco gold, hexane/EtOAc 0-100%) to give 2,6-bis(benzyloxy)-3,4′-bipyridine (41-2) (90.0 mg, 244 mumol, 81.0 %) as a white solid. MS: ES+ 369.2

Statistics shows that 16727-47-2 is playing an increasingly important role. we look forward to future research findings about 2,6-Bis(benzyloxy)-3-bromopyridine.

Reference:
Patent; C4 THERAPEUTICS, INC.; PHILLIPS, Andrew, J.; NASVESCHUK, Chris, G.; HENDERSON, James, A.; LIANG, Yanke; HE, Minsheng; LAZARSKI, Kiel; VEITS, Gesine, Kerstin; VORA, Harit, U.; (794 pag.)WO2017/197046; (2017); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Extended knowledge of 769-54-0

The synthetic route of 769-54-0 has been constantly updated, and we look forward to future research findings.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 769-54-0, name is 3-Fluoro-4-nitropyridine 1-oxide, the common compound, a new synthetic route is introduced below. Application In Synthesis of 3-Fluoro-4-nitropyridine 1-oxide

To a mixture suspension of 3-fluoro-4-nitropyridine 1-oxide (9.75 g, 61.7 mmol) and methanol (145 mL) was added 28% sodium methoxide methanol solution (11.9 g, 61.7 mmol) with cooling with ice. This mixture was heated to room temperature and stirred for 1 hour at the temperature. The methanol was distilled off under reduced pressure. Water (50 mL) was added to the residue, followed by extracting with chloroform. The organic layer was washed with brine, and anhydrous sodium sulfate was added to dry the layer. After anhydrous sodium sulfate was removed by filtration, the solvent was distilled off under reduced pressure to obtain 3-methoxy-4-nitropyridine 1-oxide (9.54 g; yield, 91%).

The synthetic route of 769-54-0 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; ISHIHARA SANGYO KAISHA, LTD.; KIRIYAMA, Kazuhisa; MATSUMOTO, Masahiro; YOSHIDA, Kotaro; BOLDBAATAR, DamdinSuren; JUKUROGI, Tatsuya; UMEMOTO, Nao; KANI, Tatsuya; MATSUDA, Yoko; TANAKA, Kumiko; KANUMA, Michiko; SHIMADA, Tatsuya; WO2014/98259; (2014); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

New learning discoveries about 83766-88-5

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 83766-88-5, 2-(tert-Butoxy)pyridine.

Related Products of 83766-88-5, As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 83766-88-5, name is 2-(tert-Butoxy)pyridine, molecular formula is C9H13NO, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.

Carboxylic acid (0.2 g, 1.64 mmol), tert-butoxypyridine (0.33 g, 2.21 mmol) and boron trifluoride diethyl etherate (0.31 g, 2.21 mmol) in dry PhCH3 (2 mL) were added to a 20-ml vial. The reaction mixture was then allowed to stir at room temperature for 30 min before quenching with anhydrous NaHCO3. The reaction mixture was diluted with ethyl acetate (30 mL), then washed with water (20 mL), followed by brine (20 mL). The organic layer was dried over anhydrous sodium sulfate and carefully concentrated under reduced pressure. The resulting residue was then purified by flash column chromatography on silica gel with 0:4 to 1:4 dichloromethane/hexane as eluent to yield the desired product 5a as a colorless oil.

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 83766-88-5, 2-(tert-Butoxy)pyridine.

Reference:
Article; La, Minh Thanh; Kim, Hee-Kwon; Tetrahedron; vol. 74; 27; (2018); p. 3748 – 3754;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Analyzing the synthesis route of 75806-86-9

The synthetic route of 75806-86-9 has been constantly updated, and we look forward to future research findings.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 75806-86-9, name is 2-Bromo-5-chloro-3-nitropyridine, the common compound, a new synthetic route is introduced below. category: pyridine-derivatives

To a solution of sodium hydride [(1 .52 g, 63.17 mmol (95%)] in DMSO (20.0 mL) at 0 00 diethylmalonate (10.11 g, 63.17 mmol) was added and kept for reflux at 100 00 forlh. The reaction mixture was cooled to room temperature and intermediate 32b(10.0 g, 42.11 mmol) was added drop wise in DMSO (20 mL) to the resulting solutionand refluxed at 10000 for 3 h. The reaction mixture was quenched with ice water and extracted by using Ethyl acetate washed with water, and dried over anhydrous Na2SO4 The solvent was removed under vacuo to yield the title compound (10.0 g, 75.00%) as a brown oily product. LOMS: (M-H) = 315.0

The synthetic route of 75806-86-9 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; BOEHRINGER INGELHEIM INTERNATIONAL GMBH; MADANAHALLI RANGANATH RAO, Jagannath; GURRAM RANGA, Madhavan; PACHIYAPPAN, Shanmugam; WO2014/202580; (2014); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

The important role of 2-(2-Chloropyridin-3-yl)acetic acid

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 61494-55-1, 2-(2-Chloropyridin-3-yl)acetic acid.

Related Products of 61494-55-1, The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 61494-55-1, name is 2-(2-Chloropyridin-3-yl)acetic acid. This compound has unique chemical properties. The synthetic route is as follows.

The title compound is synthesized following the procedures of Ting, P. C. et al., J. Med. Chem., 33, 2697 (1990), as follows. A stirred mixture of (2-chloropyridin-3-yl)acetic (400 mg, 2.3 mmol), aniline (456 muL, 5.0 mmol), tosic acid (10 mg) and pentanol (5 mL) is heated at reflux for 24 hr. After cooling to room temperature, water (80 mL) is added and the mixture is extracted with ethyl acetate-25% dichloromethane. The organic layer is separated, dried, filtered and concentrated. The residue is purified by chromatography eluting with dichloromethane-0 to 5% methanol. The product containing fractions are combined and concentrated to afford 1-phenyl-1,3-dihydropyrrolo[2,3-b]pyridin-2-one (356 mg, 76%) as a light brown solid. MS 211 (M+H).

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 61494-55-1, 2-(2-Chloropyridin-3-yl)acetic acid.

Reference:
Patent; Aventis Pharmaceuticals Inc.; US2005/54631; (2005); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Some tips on 73112-16-0

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 73112-16-0, 2,6-Dibromo-4-methylpyridine, other downstream synthetic routes, hurry up and to see.

Reference of 73112-16-0, Adding some certain compound to certain chemical reactions, such as: 73112-16-0, name is 2,6-Dibromo-4-methylpyridine,molecular formula is C6H5Br2N, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 73112-16-0.

(Synthesis of aromatic compound P2)Aromatic compound P2 was synthesized according to the following reaction formula. [Chemical Formula 119]Aromatic compound P2[0139] First, compound 2(l,4-bis-(2-bromo-4-methylpyridm-6-yl)-3,4-diaminobenzene) to be used as the starting material was synthesized via 4,7-bis-(2-bromo-4-methylpyridin-6-yl)-2, 1 ,3-benzothiadiazole.[0140] Specifically, 4.930 g of 2,6-dibromo-4-methylpyridine (0.0196 mol) and 0.762 g of 4,7-bis-pinacolato-diborane-2,l ,3-benzothiadiazole (0.00196 mol) were dissolved in 120 ml of toluene to obtain a toluene solution. To the toluene solution there were added 10 ml of an aqueous solution dissolving 10 g of K2C03, and 0.032 g of trioctylmethylammonium chloride (trade name: Aliquat336 by Aldrich Co., hereunder referred to as “Aliquat336”). After deaerating the solution with argon, 0.1132 g of tetrakis-(triphenylphosphin)-Pd(0)(0.098 mmol) was added and the mixture was heated at 80C for 1 week. This was followed by column purification (dichloromethane/hexane/ethyl acetate) to obtain 0.507 g of 4,7-bis-(2-bromo-4-methylpyridin-6-yl)-2, 1 ,3-benzothiadiazole at a yield of 54% .Results of NMR analysis and MS analysis of 4,7-bis-(2-bromo-4-methylpyridin-6-yl)-2, 1 ,3-benzothiadiazole-NMR (250 MHz, CD2C12): delta = 8.684 ppm (s, 2H); 8.625 ppm (s, 2H); 7.385 ppm (s, 2H); 2.484 ppm (s, 6H)MS(FD, 8 kV) Found: m/z 476.2 (M ), Calculated: m/z: 476.19 (M+)

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 73112-16-0, 2,6-Dibromo-4-methylpyridine, other downstream synthetic routes, hurry up and to see.

Reference:
Patent; SUMITOMO CHEMICAL COMPANY, LIMITED; Max Planck Gesellschaft zur Foerderung der Wissenschaften e. V.; KOSHINO, Nobuyoshi; HIGASHIMURA, Hideyuki; MUELLEN, Klaus; MALOTKI, Christian von; SU, Qi; BAUMGARTEN, Martin; NOROUZI-ARASI, Hassan; ARNOLD, Lena; LIU, Ruili; WO2011/52805; (2011); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem