Huang, Binbin team published research on Chemical Communications (Cambridge, United Kingdom) in 2020 | 16133-25-8

Related Products of 16133-25-8, Pyridine-3-sulfonyl chloride is a useful research compound. Its molecular formula is C5H4ClNO2S and its molecular weight is 177.61 g/mol. The purity is usually 95%.
Pyridine-3-sulfonyl chloride is a reagent used in the synthesis of pyrimidine derivatives with anti-proliferative activity against negative breast cancer cells.
Pyridine-3-sulfonyl chloride is a chemical compound that binds to the active site of cytochrome P450 enzymes. It can be used to study the effects of matrix effect on reaction solution. Pyridine-3-sulfonyl chloride has been shown to have an UV absorption spectrum with a maximum at 280 nm and a p450 activity that is proportional to the concentration of human serum. This compound has been shown to inhibit kinase domain in vitro assays, which may have clinical relevance in the treatment of obesity., 16133-25-8.

At 25 °C pyridine has a viscosity of 0.88 mPa/s and thermal conductivity of 0.166 W·m−1·K−1. 16133-25-8, formula is C5H4ClNO2S, Name is Pyridine-3-sulfonyl chloride. The enthalpy of vaporization is 35.09 kJ·mol−1 at the boiling point and normal pressure.The enthalpy of fusion is 8.28 kJ·mol−1 at the melting point. Related Products of 16133-25-8.

Huang, Binbin;Yang, Chao;Zhou, Jia;Xia, Wujiong research published 《 Electrochemically generated N-iodoaminium species as key intermediates for selective methyl sulphonylimination of tertiary amines》, the research content is summarized as follows. A straightforward protocol for approaching N-sulfonylamidines (E/Z)-RS(O)2N=CHN(R1)(R2) (R = Me, 2-fluorophenyl, thiophen-2-yl, etc.; R1 = Me; R2 = Et, cyclohexyl, benzyl, etc.; R1R2 = -(CH2)5-, -(CH2)2O(CH2)2-) and I via an electricity-driven, iodine-mediated cross dehydrogenative condensation (CDC) between sulfonamides RS(O)2NH2 and tertiary amines CH3N(R1)(R2), which features exclusive N-CH3 selectivity for the amine partners was reported. Mechanistic studies indicate that an in situ generated N-iodoaminium species serves as the key intermediate.

Related Products of 16133-25-8, Pyridine-3-sulfonyl chloride is a useful research compound. Its molecular formula is C5H4ClNO2S and its molecular weight is 177.61 g/mol. The purity is usually 95%.
Pyridine-3-sulfonyl chloride is a reagent used in the synthesis of pyrimidine derivatives with anti-proliferative activity against negative breast cancer cells.
Pyridine-3-sulfonyl chloride is a chemical compound that binds to the active site of cytochrome P450 enzymes. It can be used to study the effects of matrix effect on reaction solution. Pyridine-3-sulfonyl chloride has been shown to have an UV absorption spectrum with a maximum at 280 nm and a p450 activity that is proportional to the concentration of human serum. This compound has been shown to inhibit kinase domain in vitro assays, which may have clinical relevance in the treatment of obesity., 16133-25-8.

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Huang, Adrian team published research on Journal of Organic Chemistry in 2018 | 766-11-0

766-11-0, 5-Bromo-2-fluoropyridine is a useful research compound. Its molecular formula is C5H3BrFN and its molecular weight is 175.99 g/mol. The purity is usually 95%.
5-Bromo-2-fluoropyridine is a boronic acid that has been shown to react with iodides and form 5-bromo-2-fluoroiodobenzene. The reaction of 5-bromo-2-fluoropyridine with benzene gives the same product as the reaction with 1,3,5-trioxane. The UV absorption of 5-bromo-2-fluoropyridine is found at 230 nm and 260 nm. It also has an absorption band in the infrared region at 1625 cm−1. Vibrational progressions have been observed for this molecule, which are due to dipole moments and electron density distributions in the molecule.
5-bromo-2-fluoropyridine is used in the synthesis of heteroaromatic and aniline derivatives of piperidines as potent ligands used for vesicular acetylcholine transport. , Category: pyridine-derivatives

Pyridine has a conjugated system of six π electrons that are delocalized over the ring. 766-11-0, formula is C5H3BrFN, Name is 5-Bromo-2-fluoropyridine. The molecule is planar and, thus, follows the Hückel criteria for aromatic systems. Category: pyridine-derivatives.

Huang, Adrian;Wo, Kellie;Lee, So Yeun Christine;Kneitschel, Nika;Chang, Jennifer;Zhu, Kathleen;Mello, Tatsiana;Bancroft, Laura;Norman, Natalie;Zheng, Shao-Liang research published 《 Correction to Regioselective Synthesis, NMR, and Crystallographic Analysis of N1-Substituted Pyrazoles [Erratum to document cited in CA167:278955]》, the research content is summarized as follows. There are errors in Table 2 on page 8867; the correct table is provided here.

766-11-0, 5-Bromo-2-fluoropyridine is a useful research compound. Its molecular formula is C5H3BrFN and its molecular weight is 175.99 g/mol. The purity is usually 95%.
5-Bromo-2-fluoropyridine is a boronic acid that has been shown to react with iodides and form 5-bromo-2-fluoroiodobenzene. The reaction of 5-bromo-2-fluoropyridine with benzene gives the same product as the reaction with 1,3,5-trioxane. The UV absorption of 5-bromo-2-fluoropyridine is found at 230 nm and 260 nm. It also has an absorption band in the infrared region at 1625 cm−1. Vibrational progressions have been observed for this molecule, which are due to dipole moments and electron density distributions in the molecule.
5-bromo-2-fluoropyridine is used in the synthesis of heteroaromatic and aniline derivatives of piperidines as potent ligands used for vesicular acetylcholine transport. , Category: pyridine-derivatives

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Huang, Adrian team published research on Journal of Organic Chemistry in 2017 | 766-11-0

Product Details of C5H3BrFN, 5-Bromo-2-fluoropyridine is a useful research compound. Its molecular formula is C5H3BrFN and its molecular weight is 175.99 g/mol. The purity is usually 95%.
5-Bromo-2-fluoropyridine is a boronic acid that has been shown to react with iodides and form 5-bromo-2-fluoroiodobenzene. The reaction of 5-bromo-2-fluoropyridine with benzene gives the same product as the reaction with 1,3,5-trioxane. The UV absorption of 5-bromo-2-fluoropyridine is found at 230 nm and 260 nm. It also has an absorption band in the infrared region at 1625 cm−1. Vibrational progressions have been observed for this molecule, which are due to dipole moments and electron density distributions in the molecule.
5-bromo-2-fluoropyridine is used in the synthesis of heteroaromatic and aniline derivatives of piperidines as potent ligands used for vesicular acetylcholine transport. , 766-11-0.

Pyridine is a basic heterocyclic organic compound with the chemical formula C5H5N. It is structurally related to benzene, with one methine group (=CH−) replaced by a nitrogen atom. 766-11-0, formula is C5H3BrFN, Name is 5-Bromo-2-fluoropyridine. It is a highly flammable, weakly alkaline, water-miscible liquid with a distinctive, unpleasant fish-like smell. Product Details of C5H3BrFN.

Huang, Adrian;Wo, Kellie;Lee, So Yeun Christine;Kneitschel, Nika;Chang, Jennifer;Zhu, Kathleen;Mello, Tatsiana;Bancroft, Laura;Norman, Natalie J.;Zheng, Shao-Liang research published 《 Regioselective Synthesis, NMR, and Crystallographic Analysis of N1-Substituted Pyrazoles》, the research content is summarized as follows. A systematic study of the N-substitution reactions of 3-substituted pyrazoles under basic conditions was undertaken. N1-Alkyl-, aryl-, and heteroarylpyrazoles were prepared regioselectively in 28-96% yields and in 3:1->99:1 regioselectivities by alkylation or arylation of 3-nitro-, 3-trifluoromethyl, 3-Me, 3-bromo-, 3-phenylpyrazoles and Et 3-pyrazolecarboxylate with alkyl bromides and iodides and electron-deficient aryl fluorides using K2CO3 as base in DMSO. DFT calculations of the at. charges at the pyrazole nitrogens in the pyrazolate anions were consistent with the observed regioselectivities; steric effects were observed in alkylations of pyrazoles. The structures of twenty-five of the pyrazole products were determined by X-ray crystallog.

Product Details of C5H3BrFN, 5-Bromo-2-fluoropyridine is a useful research compound. Its molecular formula is C5H3BrFN and its molecular weight is 175.99 g/mol. The purity is usually 95%.
5-Bromo-2-fluoropyridine is a boronic acid that has been shown to react with iodides and form 5-bromo-2-fluoroiodobenzene. The reaction of 5-bromo-2-fluoropyridine with benzene gives the same product as the reaction with 1,3,5-trioxane. The UV absorption of 5-bromo-2-fluoropyridine is found at 230 nm and 260 nm. It also has an absorption band in the infrared region at 1625 cm−1. Vibrational progressions have been observed for this molecule, which are due to dipole moments and electron density distributions in the molecule.
5-bromo-2-fluoropyridine is used in the synthesis of heteroaromatic and aniline derivatives of piperidines as potent ligands used for vesicular acetylcholine transport. , 766-11-0.

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Hu, Li-Qun team published research on Organometallics in 2018 | 766-11-0

766-11-0, 5-Bromo-2-fluoropyridine is a useful research compound. Its molecular formula is C5H3BrFN and its molecular weight is 175.99 g/mol. The purity is usually 95%.
5-Bromo-2-fluoropyridine is a boronic acid that has been shown to react with iodides and form 5-bromo-2-fluoroiodobenzene. The reaction of 5-bromo-2-fluoropyridine with benzene gives the same product as the reaction with 1,3,5-trioxane. The UV absorption of 5-bromo-2-fluoropyridine is found at 230 nm and 260 nm. It also has an absorption band in the infrared region at 1625 cm−1. Vibrational progressions have been observed for this molecule, which are due to dipole moments and electron density distributions in the molecule.
5-bromo-2-fluoropyridine is used in the synthesis of heteroaromatic and aniline derivatives of piperidines as potent ligands used for vesicular acetylcholine transport. , COA of Formula: C5H3BrFN

Pyridine is diamagnetic and has a diamagnetic susceptibility of −48.7 × 10−6 cm3·mol−1.The molecular electric dipole moment is 2.2 debyes. 766-11-0, formula is C5H3BrFN, Name is 5-Bromo-2-fluoropyridine. TThe standard enthalpy of formation is 100.2 kJ·mol−1 in the liquid phase and 140.4 kJ·mol−1 in the gas phase. COA of Formula: C5H3BrFN.

Hu, Li-Qun;Deng, Rong-Li;Li, Yan-Fen;Zeng, Cui-Jin;Shen, Dong-Sheng;Liu, Feng-Shou research published 《 Developing Bis(imino)acenaphthene-Supported N-Heterocyclic Carbene Palladium Precatalysts for Direct Arylation of Azoles》, the research content is summarized as follows. From the strategy of developing highly efficient protocol for Pd-catalyzed cross-coupling reactions, bulky bis(imino)acenaphthene (BIAN)-supported Pd-PEPPSI complexes were synthesized, characterized and applied in direct arylation of azoles. The effect of backbone and N-moieties on NHCs was evaluated and the reaction conditions were optimized. The bulky Pd-PEPPSI complexes could be successfully employed in cross-coupling of (hetero)aryl bromides with azoles at a low Pd loading of 0.5-0.05 mol% under aerobic conditions, demonstrating the ease of manipulation without glovebox and handling of solvents.

766-11-0, 5-Bromo-2-fluoropyridine is a useful research compound. Its molecular formula is C5H3BrFN and its molecular weight is 175.99 g/mol. The purity is usually 95%.
5-Bromo-2-fluoropyridine is a boronic acid that has been shown to react with iodides and form 5-bromo-2-fluoroiodobenzene. The reaction of 5-bromo-2-fluoropyridine with benzene gives the same product as the reaction with 1,3,5-trioxane. The UV absorption of 5-bromo-2-fluoropyridine is found at 230 nm and 260 nm. It also has an absorption band in the infrared region at 1625 cm−1. Vibrational progressions have been observed for this molecule, which are due to dipole moments and electron density distributions in the molecule.
5-bromo-2-fluoropyridine is used in the synthesis of heteroaromatic and aniline derivatives of piperidines as potent ligands used for vesicular acetylcholine transport. , COA of Formula: C5H3BrFN

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Hsu, Kai-Cheng team published research on European Journal of Medicinal Chemistry in 2021 | 1603-41-4

Computed Properties of 1603-41-4, 2-Amino-5-methylpyridine, also known as 2-Amino-5-methylpyridine, is a useful research compound. Its molecular formula is C6H8N2 and its molecular weight is 108.14 g/mol. The purity is usually 95%.
2-Amino-5-methylpyridine is a chemical compound that belongs to the group of methyl ketones. It has a nitrogen atom and an oxygen atom in its structure, which allows it to form hydrogen bonds with other molecules. 2-Amino-5-methylpyridine can be obtained by reacting hydrochloric acid and xanthone in the presence of a base. The compound is highly reactive and has been shown to have antiinflammatory properties. This can be attributed to its ability to inhibit prostaglandin synthesis. 2-Amino-5-methylpyridine also has fluorescence properties that are sensitive to pH changes and can be used as a probe for metal ions. 2-Amino-5-methylpyridine is an organic compound that contains a methyl group, two nitrogen atoms, and one oxygen atom in its chemical structure. This molecule can form hydrogen bonds with other molecules due to its nitrogen atoms and oxygen atom,, 1603-41-4.

At 25 °C pyridine has a viscosity of 0.88 mPa/s and thermal conductivity of 0.166 W·m−1·K−1. 1603-41-4, formula is C6H8N2, Name is 2-Amino-5-methylpyridine. The enthalpy of vaporization is 35.09 kJ·mol−1 at the boiling point and normal pressure.The enthalpy of fusion is 8.28 kJ·mol−1 at the melting point. Computed Properties of 1603-41-4.

Hsu, Kai-Cheng;Chu, Jung-Chun;Tseng, Hui-Ju;Liu, Chia-I.;Wang, Hao-Ching;Lin, Tony Eight;Lee, Hong-Sheng;Hsin, Ling-Wei;Wang, Andrew H.-J.;Lin, Chien-Huang;Huang, Wei-Jan research published 《 Synthesis and biological evaluation of phenothiazine derivative-containing hydroxamic acids as potent class II histone deacetylase inhibitors》, the research content is summarized as follows. In this study, the acridine ring was modified using various phenothiazine derivatives Several resulting compounds I [R = H, Br, H2NCO, etc.; R1 = hydroxycarbamoyl, 3-(hydroxyamino)-3-oxo-prop-1-enyl; X = S, sulfinyl] exhibited potent enzyme-inhibiting activity towards class II HDACs when compared to the clin. approved HDAC inhibitor SAHA. Compound I [R = H2NCO; R1 = hydroxycarbamoyl; X = S] demonstrated the highest class II HDAC inhibition (IC50 = 4.6-600 nM), as well as promotion of neurite outgrowth. Importantly, compound I [R = H2NCO; R1 = hydroxycarbamoyl; X = S] displayed no cytotoxicity against neuron cells. Compound I [R = H2NCO; R1 = hydroxycarbamoyl; X = S] was further evaluated for cellular effects. Altogether, these findings showed a potential strategy in HDAC inhibition for treatment of the neurol. disease.

Computed Properties of 1603-41-4, 2-Amino-5-methylpyridine, also known as 2-Amino-5-methylpyridine, is a useful research compound. Its molecular formula is C6H8N2 and its molecular weight is 108.14 g/mol. The purity is usually 95%.
2-Amino-5-methylpyridine is a chemical compound that belongs to the group of methyl ketones. It has a nitrogen atom and an oxygen atom in its structure, which allows it to form hydrogen bonds with other molecules. 2-Amino-5-methylpyridine can be obtained by reacting hydrochloric acid and xanthone in the presence of a base. The compound is highly reactive and has been shown to have antiinflammatory properties. This can be attributed to its ability to inhibit prostaglandin synthesis. 2-Amino-5-methylpyridine also has fluorescence properties that are sensitive to pH changes and can be used as a probe for metal ions. 2-Amino-5-methylpyridine is an organic compound that contains a methyl group, two nitrogen atoms, and one oxygen atom in its chemical structure. This molecule can form hydrogen bonds with other molecules due to its nitrogen atoms and oxygen atom,, 1603-41-4.

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Horan, Alexandra M. team published research on Organic Letters in 2021 | 5315-25-3

5315-25-3, 2-Bromo-6-methylpyridine (2BMPy) is a bromopyridine derivative. It is formed when 2-chloro-6-methylpyridine is heated with bromotrimethylsilane. Its synthesis from various methods have been reported.
2-Bromo-6-methylpyridine is a building block in the preparation of nitrogen containing heterocyclic compounds.
2-Bromo-6-methylpyridine is an organic compound that belongs to the group of pyridinium halides. It is soluble in common solvents such as water, ethanol, and acetone. 2BMPy has been shown to act as a glutamate receptor antagonist and has been used in the study of glutamate receptors, including their subtypes. This chemical has also been shown to have antioxidant properties and can be used in the prevention of atherosclerosis., SDS of cas: 5315-25-3

Pyridine is diamagnetic and has a diamagnetic susceptibility of −48.7 × 10−6 cm3·mol−1.The molecular electric dipole moment is 2.2 debyes. 5315-25-3, formula is C6H6BrN, Name is 2-Bromo-6-methylpyridine. TThe standard enthalpy of formation is 100.2 kJ·mol−1 in the liquid phase and 140.4 kJ·mol−1 in the gas phase. SDS of cas: 5315-25-3.

Horan, Alexandra M.;Duong, Vincent K.;McGarrigle, Eoghan M. research published 《 Synthesis of Bis-heteroaryls Using Grignard Reagents and Pyridylsulfonium Salts》, the research content is summarized as follows. Herein ligand-coupling reactions of Grignard reagents with pyridylsulfonium salts I (R = H, Br, Me, trifluoromethyl; R1 = H, OMe, CN, Br, etc.; R2 = H, trifluoromethyl; R3 = H, Me; R2R3 = -(CH=CH-CH=CH)-) and phenyl(pyrimidin-2-yl)(p-tolyl)sulfonium trifluoromethanesulfonate are reported. The method has wide functional group tolerance and enables the formation of bis-heterocycle linkages including 2,4′-bipyridines, 2,3′-bipyridines, and 2,2′-bipyridines, as well as pyridines linked to pyrimidines, pyrazines, isoxazoles, and benzothiophenes II (R4 = 2-fluoropyridin-4-yl, pyrazin-2-yl, dimethyl-1,2-oxazol-4-yl, 1-benzothiophen-2-yl, etc.). The methodol. was successfully applied to the synthesis of the natural products caerulomycin A and E.

5315-25-3, 2-Bromo-6-methylpyridine (2BMPy) is a bromopyridine derivative. It is formed when 2-chloro-6-methylpyridine is heated with bromotrimethylsilane. Its synthesis from various methods have been reported.
2-Bromo-6-methylpyridine is a building block in the preparation of nitrogen containing heterocyclic compounds.
2-Bromo-6-methylpyridine is an organic compound that belongs to the group of pyridinium halides. It is soluble in common solvents such as water, ethanol, and acetone. 2BMPy has been shown to act as a glutamate receptor antagonist and has been used in the study of glutamate receptors, including their subtypes. This chemical has also been shown to have antioxidant properties and can be used in the prevention of atherosclerosis., SDS of cas: 5315-25-3

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Hoque, Emdadul Md team published research on Journal of the American Chemical Society in 2021 | 5315-25-3

Reference of 5315-25-3, 2-Bromo-6-methylpyridine (2BMPy) is a bromopyridine derivative. It is formed when 2-chloro-6-methylpyridine is heated with bromotrimethylsilane. Its synthesis from various methods have been reported.
2-Bromo-6-methylpyridine is a building block in the preparation of nitrogen containing heterocyclic compounds.
2-Bromo-6-methylpyridine is an organic compound that belongs to the group of pyridinium halides. It is soluble in common solvents such as water, ethanol, and acetone. 2BMPy has been shown to act as a glutamate receptor antagonist and has been used in the study of glutamate receptors, including their subtypes. This chemical has also been shown to have antioxidant properties and can be used in the prevention of atherosclerosis., 5315-25-3.

The critical parameters of pyridine are pressure 6.70 MPa, temperature 620 K and volume 229 cm3·mol−1. 5315-25-3, formula is C6H6BrN, Name is 2-Bromo-6-methylpyridine. In the temperature range 340–426 °C its vapor pressure p can be described with the Antoine equation.. Reference of 5315-25-3.

Hoque, Emdadul Md;Hassan, Mirja Mahamudul Md;Chattopadhyay, Buddhadeb research published 《 Remarkably Efficient Iridium Catalysts for Directed C(sp2)-H and C(sp3)-H Borylation of Diverse Classes of Substrates》, the research content is summarized as follows. Here we describe the discovery of a new class of C-H borylation catalysts and their use for regioselective C-H borylation of aromatic, heteroaromatic, and aliphatic systems. The new catalysts have Ir-C(thienyl) or Ir-C(furyl) anionic ligands instead of the diamine-type neutral chelating ligands used in the standard C-H borylation conditions. It is reported that the employment of these newly discovered catalysts show excellent reactivity and ortho-selectivity for diverse classes of aromatic substrates with high isolated yields. Moreover, the catalysts proved to be efficient for a wide number of aliphatic substrates for selective C(sp3)-H bond borylations. Heterocyclic mols. are selectively borylated using the inherently elevated reactivity of the C-H bonds. A number of late-stage C-H functionalization have been described using the same catalysts. Furthermore, we show that one of the catalysts could be used even in open air for the C(sp2)-H and C(sp3)-H borylations enabling the method more general. Preliminary mechanistic studies suggest that the active catalytic intermediate is the Ir(bis)boryl complex, and the attached ligand acts as bidentate ligand. Collectively, this study underlines the discovery of new class of C-H borylation catalysts that should find wide application in the context of C-H functionalization chem.

Reference of 5315-25-3, 2-Bromo-6-methylpyridine (2BMPy) is a bromopyridine derivative. It is formed when 2-chloro-6-methylpyridine is heated with bromotrimethylsilane. Its synthesis from various methods have been reported.
2-Bromo-6-methylpyridine is a building block in the preparation of nitrogen containing heterocyclic compounds.
2-Bromo-6-methylpyridine is an organic compound that belongs to the group of pyridinium halides. It is soluble in common solvents such as water, ethanol, and acetone. 2BMPy has been shown to act as a glutamate receptor antagonist and has been used in the study of glutamate receptors, including their subtypes. This chemical has also been shown to have antioxidant properties and can be used in the prevention of atherosclerosis., 5315-25-3.

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Holloway, Lauren R. team published research on Journal of the American Chemical Society in 2018 | 31181-90-5

31181-90-5, 5-Bromopyridine-2-carbaldehyde is a useful research compound. Its molecular formula is C6H4BrNO and its molecular weight is 186.01 g/mol. The purity is usually 95%.

5-Bromopyridine-2-carbaldehyde is a water soluble organic molecule that has been shown to inhibit the mitochondrial respiratory chain. It is a structural analog of the natural substrate for mitochondrial cytochrome c oxidase, 5-aminolevulinic acid. This compound has been shown to be selective against cancer cells and has anti-viral properties. The photophysical properties of 5-bromopyridine-2-carbaldehyde have been studied extensively. The fluorescence quantum yield of this molecule in aqueous solution is 0.06%., Product Details of C6H4BrNO

Pyridine is diamagnetic and has a diamagnetic susceptibility of −48.7 × 10−6 cm3·mol−1.The molecular electric dipole moment is 2.2 debyes. 31181-90-5, formula is C6H4BrNO, Name is 5-Bromopicolinaldehyde. TThe standard enthalpy of formation is 100.2 kJ·mol−1 in the liquid phase and 140.4 kJ·mol−1 in the gas phase. Product Details of C6H4BrNO.

Holloway, Lauren R.;Bogie, Paul M.;Lyon, Yana;Ngai, Courtney;Miller, Tabitha F.;Julian, Ryan R.;Hooley, Richard J. research published 《 Tandem Reactivity of a Self-Assembled Cage Catalyst with Endohedral Acid Groups》, the research content is summarized as follows. Self-assembly of a carboxylic acid-containing ligand into an Fe4L6 iminopyridine cage allows endohedral positioning of the acid groups while maintaining a robust cage structure. The cage is an effective supramol. catalyst, providing up to 1000-fold rate enhancement of acetal solvolysis. This enhanced reactivity allows a tandem deprotection/cage-to-cage interconversion that cannot be achieved with other acid catalysts. The combination of rate enhancements and sequestration of the reactive function confers both activity and selectivity on the process, mimicking enzymic behavior.

31181-90-5, 5-Bromopyridine-2-carbaldehyde is a useful research compound. Its molecular formula is C6H4BrNO and its molecular weight is 186.01 g/mol. The purity is usually 95%.

5-Bromopyridine-2-carbaldehyde is a water soluble organic molecule that has been shown to inhibit the mitochondrial respiratory chain. It is a structural analog of the natural substrate for mitochondrial cytochrome c oxidase, 5-aminolevulinic acid. This compound has been shown to be selective against cancer cells and has anti-viral properties. The photophysical properties of 5-bromopyridine-2-carbaldehyde have been studied extensively. The fluorescence quantum yield of this molecule in aqueous solution is 0.06%., Product Details of C6H4BrNO

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Hickey, David P. team published research on Journal of the American Chemical Society in 2019 | 5315-25-3

Related Products of 5315-25-3, 2-Bromo-6-methylpyridine (2BMPy) is a bromopyridine derivative. It is formed when 2-chloro-6-methylpyridine is heated with bromotrimethylsilane. Its synthesis from various methods have been reported.
2-Bromo-6-methylpyridine is a building block in the preparation of nitrogen containing heterocyclic compounds.
2-Bromo-6-methylpyridine is an organic compound that belongs to the group of pyridinium halides. It is soluble in common solvents such as water, ethanol, and acetone. 2BMPy has been shown to act as a glutamate receptor antagonist and has been used in the study of glutamate receptors, including their subtypes. This chemical has also been shown to have antioxidant properties and can be used in the prevention of atherosclerosis., 5315-25-3.

At 25 °C pyridine has a viscosity of 0.88 mPa/s and thermal conductivity of 0.166 W·m−1·K−1. 5315-25-3, formula is C6H6BrN, Name is 2-Bromo-6-methylpyridine. The enthalpy of vaporization is 35.09 kJ·mol−1 at the boiling point and normal pressure.The enthalpy of fusion is 8.28 kJ·mol−1 at the melting point. Related Products of 5315-25-3.

Hickey, David P.;Sandford, Christopher;Rhodes, Zayn;Gensch, Tobias;Fries, Lydia R.;Sigman, Matthew S.;Minteer, Shelley D. research published 《 Investigating the Role of Ligand Electronics on Stabilizing Electrocatalytically Relevant Low-Valent Co(I) Intermediates》, the research content is summarized as follows. Cobalt complexes have shown great promise as electrocatalysts in applications ranging from hydrogen evolution to C-H functionalization. However, the use of such complexes often requires polydentate, bulky ligands to stabilize the catalytically active Co(I) oxidation state from deleterious disproportionation reactions to enable the desired reactivity. Herein, we describe the use of bidentate electronically asym. ligands as an alternative approach to stabilizing transient Co(I) species. Using disproportionation rates of electrochem. generated Co(I) complexes as a model for stability, we measured the relative stability of complexes prepared with a series of N,N-bidentate ligands. While the stability of Co(I)Cl complexes demonstrates a correlation with exptl. measured thermodn. properties, consistent with an outer-sphere electron transfer process, the set of ligated Co(I)Br complexes evaluated was found to be preferentially stabilized by electronically asym. ligands, demonstrating an alternative disproportionation mechanism. These results allow a greater understanding of the fundamental processes involved in the disproportionation of organometallic complexes and have allowed the identification of cobalt complexes that show promise for the development of novel electrocatalytic reactions.

Related Products of 5315-25-3, 2-Bromo-6-methylpyridine (2BMPy) is a bromopyridine derivative. It is formed when 2-chloro-6-methylpyridine is heated with bromotrimethylsilane. Its synthesis from various methods have been reported.
2-Bromo-6-methylpyridine is a building block in the preparation of nitrogen containing heterocyclic compounds.
2-Bromo-6-methylpyridine is an organic compound that belongs to the group of pyridinium halides. It is soluble in common solvents such as water, ethanol, and acetone. 2BMPy has been shown to act as a glutamate receptor antagonist and has been used in the study of glutamate receptors, including their subtypes. This chemical has also been shown to have antioxidant properties and can be used in the prevention of atherosclerosis., 5315-25-3.

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Hell, Sandrine M. team published research on Angewandte Chemie, International Edition in 2020 | 16133-25-8

Electric Literature of 16133-25-8, Pyridine-3-sulfonyl chloride is a useful research compound. Its molecular formula is C5H4ClNO2S and its molecular weight is 177.61 g/mol. The purity is usually 95%.
Pyridine-3-sulfonyl chloride is a reagent used in the synthesis of pyrimidine derivatives with anti-proliferative activity against negative breast cancer cells.
Pyridine-3-sulfonyl chloride is a chemical compound that binds to the active site of cytochrome P450 enzymes. It can be used to study the effects of matrix effect on reaction solution. Pyridine-3-sulfonyl chloride has been shown to have an UV absorption spectrum with a maximum at 280 nm and a p450 activity that is proportional to the concentration of human serum. This compound has been shown to inhibit kinase domain in vitro assays, which may have clinical relevance in the treatment of obesity., 16133-25-8.

Pyridine is a basic heterocyclic organic compound with the chemical formula C5H5N. It is structurally related to benzene, with one methine group (=CH−) replaced by a nitrogen atom. 16133-25-8, formula is C5H4ClNO2S, Name is Pyridine-3-sulfonyl chloride. It is a highly flammable, weakly alkaline, water-miscible liquid with a distinctive, unpleasant fish-like smell. Electric Literature of 16133-25-8.

Hell, Sandrine M.;Meyer, Claudio F.;Misale, Antonio;Sap, Jeroen B. I.;Christensen, Kirsten E.;Willis, Michael C.;Trabanco, Andres A.;Gouverneur, Veronique research published 《 Hydrosulfonylation of Alkenes with Sulfonyl Chlorides under Visible Light Activation》, the research content is summarized as follows. Sulfonyl chlorides are inexpensive reactants extensively explored for functionalization, but never considered for radical hydrosulfonylation of alkenes. Herein, the authors report that tris(trimethylsilyl)silane is an ideal hydrogen atom donor enabling highly effective photoredox-catalyzed hydrosulfonylation of electron-deficient alkenes with sulfonyl chlorides. To increase the generality of this transformation, polarity-reversal catalysis (PRC) was successfully implemented for alkenes bearing alkyl substituents. This late-stage functionalization method tolerates a remarkably wide range of functional groups, is operationally simple, scalable, and allows access to building blocks which are important for medicinal chem. and drug discovery.

Electric Literature of 16133-25-8, Pyridine-3-sulfonyl chloride is a useful research compound. Its molecular formula is C5H4ClNO2S and its molecular weight is 177.61 g/mol. The purity is usually 95%.
Pyridine-3-sulfonyl chloride is a reagent used in the synthesis of pyrimidine derivatives with anti-proliferative activity against negative breast cancer cells.
Pyridine-3-sulfonyl chloride is a chemical compound that binds to the active site of cytochrome P450 enzymes. It can be used to study the effects of matrix effect on reaction solution. Pyridine-3-sulfonyl chloride has been shown to have an UV absorption spectrum with a maximum at 280 nm and a p450 activity that is proportional to the concentration of human serum. This compound has been shown to inhibit kinase domain in vitro assays, which may have clinical relevance in the treatment of obesity., 16133-25-8.

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem