Zhu, Min’s team published research in Journal of the American Chemical Society in 2019 | CAS: 94928-86-6

fac-Tris(2-phenylpyridine)iridium(cas: 94928-86-6) belongs to pyridine. Pyridine is very deactivated towards electrophilic substitution with respect to benzene. For this reason classical formylation, using methods such as the Gattermann or Vilsmeier reactions, are not generally successful. SDS of cas: 94928-86-6

In 2019,Journal of the American Chemical Society included an article by Zhu, Min; Zheng, Chao; Zhang, Xiao; You, Shu-Li. SDS of cas: 94928-86-6. The article was titled 《Synthesis of Cyclobutane-Fused Angular Tetracyclic Spiroindolines via Visible-Light-Promoted Intramolecular Dearomatization of Indole Derivatives》. The information in the text is summarized as follows:

An intramol. dearomatization of indole derivatives based on visible-light-promoted [2+2] cycloaddition was achieved via energy transfer mechanism. The highly strained cyclobutane-fused angular tetracyclic spiroindolines, which were typically unattainable under thermal conditions, could be directly accessed in high yields (up to 99%) with excellent diastereoselectivity (> 20:1 dr) under mild conditions. The method was also compatible with diverse functional groups and amenable to flexible transformations. In addition, DFT calculations provided guidance on the rational design of substrates and deep understanding of the reaction pathways. This process constituted a rare example of indole functionalization by exploiting visible-light-induced reactivity at the excited states. The results came from multiple reactions, including the reaction of fac-Tris(2-phenylpyridine)iridium(cas: 94928-86-6SDS of cas: 94928-86-6)

fac-Tris(2-phenylpyridine)iridium(cas: 94928-86-6) belongs to pyridine. Pyridine is very deactivated towards electrophilic substitution with respect to benzene. For this reason classical formylation, using methods such as the Gattermann or Vilsmeier reactions, are not generally successful. SDS of cas: 94928-86-6

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Yang, Jian’s team published research in Journal of the American Chemical Society in 2019 | CAS: 626-05-1

2,6-Dibromopyridine(cas: 626-05-1) belongs to pyridine. Pyridine is very deactivated towards electrophilic substitution with respect to benzene. For this reason classical formylation, using methods such as the Gattermann or Vilsmeier reactions, are not generally successful. Safety of 2,6-Dibromopyridine

The author of 《Excimer Disaggregation Enhanced Emission: A Fluorescence “”Turn-On”” Approach to Oxoanion Recognition》 were Yang, Jian; Dong, Chao-Chen; Chen, Xu-Lang; Sun, Xin; Wei, Jin-Yan; Xiang, Jun-Feng; Sessler, Jonathan L.; Gong, Han-Yuan. And the article was published in Journal of the American Chemical Society in 2019. Safety of 2,6-Dibromopyridine The author mentioned the following in the article:

A new approach to anion sensing that involves excimer disaggregation induced emission (EDIE) is reported. It involves the anion-mediated disaggregation of the excimer formed from a cationic macrocycle. This leads to an increase in the observed fluorescence intensity. The macrocycle in question, cyclo[1]N2,N6-dimethyl-N2,N6-bis(6-(1H-imidazolium-1-yl)pyridin-2-yl)pyridine-2,6-diamine[1]1,4-dimethylbenzene (12+; prepared as its PF6- salt), is obtained in ca. 70% yield via a simple cyclization. X-ray diffraction analyses of single crystals revealed that, as prepared, this macrocycle exists in a supramol. polymeric form in the solid state. Macrocycle 12+ is weakly fluorescent in acetonitrile. The emission intensity is concentration dependent, with the maximum intensity being observed at [12+] ≈ 0.020 mM. This finding is ascribed to formation of an excimer, followed possibly by higher order aggregates as the concentration of 12+ is increased. Addition of tetrabutylammonium pyrophosphate (HP2O73-) to 12+ (0.020 mM in acetonitrile) produces a ca. 200-fold enhancement in the emission intensity (λex = 334 nm; λem = 390-650 nm). These findings are rationalized in terms of the HP2O73- serving to break up essentially non-fluorescent excited-state dimers of 12+ through formation of a highly fluorescent anion-bound monomeric complex, 12+·HP2O73-. A turn-on in the fluorescence intensity is also seen for H2PO4- and, to a lesser extent, HCO3-. Little (HSO4-, NO3-) or essentially no (N3-, SCN-, F-, Cl-, Br- and I-) response is seen for other anions. Solid-state structural anal. of single crystals obtained after treating 12+ with HP2O73- in the presence of water revealed a salt form wherein a H2P2O72- anion sits above the cone-like macrocycle. In the experimental materials used by the author, we found 2,6-Dibromopyridine(cas: 626-05-1Safety of 2,6-Dibromopyridine)

2,6-Dibromopyridine(cas: 626-05-1) belongs to pyridine. Pyridine is very deactivated towards electrophilic substitution with respect to benzene. For this reason classical formylation, using methods such as the Gattermann or Vilsmeier reactions, are not generally successful. Safety of 2,6-Dibromopyridine

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Heng, Hao’s team published research in European Journal of Medicinal Chemistry in 2019 | CAS: 29682-15-3

Methyl 5-bromopicolinate(cas: 29682-15-3) belongs to pyridine. Pyridine is very deactivated towards electrophilic substitution with respect to benzene. For this reason classical formylation, using methods such as the Gattermann or Vilsmeier reactions, are not generally successful. COA of Formula: C7H6BrNO2

The author of 《Combining structure- and property-based optimization to identify selective FLT3-ITD inhibitors with good antitumor efficacy in AML cell inoculated mouse xenograft model》 were Heng, Hao; Wang, Zhijie; Li, Hongmei; Huang, Yatian; Lan, Qingyuan; Guo, Xiaoxing; Zhang, Liang; Zhi, Yanle; Cai, Jiongheng; Qin, Tianren; Xiang, Li; Wang, Shuxian; Chen, Yadong; Lu, Tao; Lu, Shuai. And the article was published in European Journal of Medicinal Chemistry in 2019. COA of Formula: C7H6BrNO2 The author mentioned the following in the article:

FLT3 mutation is among the most common genetic mutations in acute myeloid leukemia (AML), which is also related with poor overall survival and refractory in AML patients. Recently, FLT3 inhibitors have been approved for AML therapy. Herein, a series of new compounds with pyrazole amine scaffold was discovered, which showed potent inhibitory activity against FLT3-ITD and significant selectivity against both FLT3-ITD and AML cells expressing FLT3-ITD. Compound 46, possessing the most promising cellular activity, blocked the autophosphorylation of FLT3 pathway in MV4-11 cell line. Furthermore, the apoptosis and down regulation of P-STAT5 were also observed in tumor cells extracted from the MV4-11 cell xenografts model upon compound 46 treatment. Compound 46 was also metabolically stable in vitro and suppressed tumor growth significantly in MV4-11 xenografts model in vivo. Compound 46 showed no toxicity to the viscera of mice and caused no decrease in body weight of mice. In conclusion, the results of this study could provide valuable insights into discovery of new FLT3 inhibitors, and compound 46 was worthy of further development as potential drug candidate to treat AML.Methyl 5-bromopicolinate(cas: 29682-15-3COA of Formula: C7H6BrNO2) was used in this study.

Methyl 5-bromopicolinate(cas: 29682-15-3) belongs to pyridine. Pyridine is very deactivated towards electrophilic substitution with respect to benzene. For this reason classical formylation, using methods such as the Gattermann or Vilsmeier reactions, are not generally successful. COA of Formula: C7H6BrNO2

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Otlyotov, Arseniy A.’s team published research in Journal of Molecular Structure in 2019 | CAS: 141-86-6

2,6-Diaminopyridine(cas: 141-86-6) belongs to pyridine. Pyridine and its simple derivatives are stable and relatively unreactive liquids, with strong penetrating odours that are unpleasant.HPLC of Formula: 141-86-6

The author of 《Gas-phase structures of hemiporphyrazine and dicarbahemiporphyrazine: Key role of interactions inside coordination cavity》 were Otlyotov, Arseniy A.; Zhabanov, Yuriy A.; Pogonin, Alexander E.; Kuznetsova, Alexandra S.; Islyaikin, Mikhail K.; Girichev, Georgiy V.. And the article was published in Journal of Molecular Structure in 2019. HPLC of Formula: 141-86-6 The author mentioned the following in the article:

The structures of free hemiporphyrazine and dicarbahemiporphyrazine mols. were determined by gas-phase electron diffraction and DFT calculations Distance corrections (re – ra) were calculated using two different approaches: commonly applied Sipachev’s algorithm and a recently developed technique based on mol. dynamics simulations. Both approaches examined against each other for the first time in the refinement of a relatively large (52 atoms) structure were found to result in almost the same final structural parameters. Gas-phase structures of hemiporphyrazine and dicarbahemiporphyrazine are saddle distorted, in contrast to the planar structure previously found for the solid-state hemiporphyrazine. Doubly charged anionic form of hemiporphyrazine was calculated to be significantly saddle distorted, while the anion of dicarbahemiporphyrazine was determined to possess a planar equilibrium structure. Structural features of the mols. and their doubly charged anionic forms are discussed in terms of AIM and NBO analyses.2,6-Diaminopyridine(cas: 141-86-6HPLC of Formula: 141-86-6) was used in this study.

2,6-Diaminopyridine(cas: 141-86-6) belongs to pyridine. Pyridine and its simple derivatives are stable and relatively unreactive liquids, with strong penetrating odours that are unpleasant.HPLC of Formula: 141-86-6

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Meng, Ting’s team published research in European Journal of Medicinal Chemistry in 2019 | CAS: 1134-35-6

4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6) is used as a chemical Intermediate. It can be used for the determination of ferrous and cyanide compounds.Recommanded Product: 4,4′-Dimethyl-2,2′-bipyridine Furthermore, 4,4′-Dimethyl-2,2′-bipyridine is used in the synthesis of a series of o-phenanthroline-substituted ruthenium(II) complexes.

The author of 《High in vitro and in vivo antitumor activities of Ln(III) complexes with mixed 5,7-dichloro-2-methyl-8-quinolinol and 4,4′-dimethyl-2,2′-bipyridyl chelating ligands》 were Meng, Ting; Qin, Qi-Pin; Chen, Zi-Lu; Zou, Hua-Hong; Wang, Kai; Liang, Fu-Pei. And the article was published in European Journal of Medicinal Chemistry in 2019. Recommanded Product: 4,4′-Dimethyl-2,2′-bipyridine The author mentioned the following in the article:

Three novel Ln(III) complexes, namely, [Pm(dmbpy)(ClQ)2NO3] (1), [Yb(dmbpy)(ClQ)2NO3] (2), and [Lu(dmbpy)(ClQ)2NO3] (3), with mixed 5,7-dichloro-2-methyl-8-quinolinol (H-ClQ) and 4,4′-dimethyl-2,2′-bipyridyl (dmbpy) chelating ligands were 1st synthesized. The cytotoxic activity of Ln(III) complexes 1-3, H-ClQ, and dmbpy against a panel of human normal and cancer cell lines, namely, human nonsmall cell lung cancer cells (NCI-H460), human cervical adenocarcinoma cancer cells, human ovarian cancer cells, and human normal hepatocyte cells, were evaluated by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. The three novel Ln(III) complexes showed a high in vitro antitumor activity toward the NCI-H460 with IC50 of 1.00 ± 0.25 nM for 1, 5.13 ± 0.44 μM for 2, and 11.87 ± 0.79 μM for 3, resp. Ln(III) complexes 1 and 2 exerted their in vitro antitumor activity/mechanism mainly via the mitochondrial death pathway and caused a G2/M phase arrest in the following order: 1 > 2. An NCI-H460 tumor xenograft mouse model was used to evaluate the Pm(III) complex 1 in vivo antitumor activity. Pm(III) complex 1 showed a high in vivo antitumor activity, and the tumor growth inhibition rate (IR) was 56.0% (p < 0.05). In summary, the authors' study on Pm(III) complex 1 revealed promising results in vitro and in vivo antitumor activity assays. In the experiment, the researchers used 4,4'-Dimethyl-2,2'-bipyridine(cas: 1134-35-6Recommanded Product: 4,4′-Dimethyl-2,2′-bipyridine)

4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6) is used as a chemical Intermediate. It can be used for the determination of ferrous and cyanide compounds.Recommanded Product: 4,4′-Dimethyl-2,2′-bipyridine Furthermore, 4,4′-Dimethyl-2,2′-bipyridine is used in the synthesis of a series of o-phenanthroline-substituted ruthenium(II) complexes.

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Wang, Zijian’s team published research in Polymer Bulletin (Heidelberg, Germany) in 2019 | CAS: 624-28-2

2,5-Dibromopyridine(cas: 624-28-2) belongs to pyridine. Pyridine is a relatively complex molecule and exhibits a number of different bands in IR spectra. Among others, the bands characterizing the ν8a and ν19b modes have been found to be sensitive to the coordination or protonation of the molecule. Note that the band that is diagnostic for the PyH+ ion at about 1545 cm− 1 (ν19b mode) does not overlap with any of the other bands.Recommanded Product: 624-28-2

The author of 《Building an electron push-pull system of linear conjugated polymers for improving photocatalytic hydrogen evolution efficiency》 were Wang, Zijian; Mao, Na; Zhao, Yongbo; Yang, Tongjia; Wang, Feng; Jiang, Jia-Xing. And the article was published in Polymer Bulletin (Heidelberg, Germany) in 2019. Recommanded Product: 624-28-2 The author mentioned the following in the article:

Abstract: A series of linear conjugated polymers with different acceptor units has been synthesized and applied as photocatalysts for hydrogen evolution from water splitting. It was found that the introduction of nitrogen atom into the polymer skeleton could efficiently improve the photocatalytic performance due to the improvement in charge carriers’ transport and separation, and the enhanced interfacial wettability from the hydrogen-bonding interaction between nitrogen atom and water mol. The replacement position of nitrogen atom also has a big influence on the photocatalytic performance due to the enhanced internal dipole orientation. A high hydrogen evolution rate of 18.7 μmol h-1 was achieved by PyPm with strong acceptor unit of pyrimidine. The results demonstrate that the construction of an electronic push-pull system is an efficient strategy to produce linear conjugated polymer photocatalysts with high photocatalytic performance. Graphical abstract: [Figure not available: see full text.]. The experimental process involved the reaction of 2,5-Dibromopyridine(cas: 624-28-2Recommanded Product: 624-28-2)

2,5-Dibromopyridine(cas: 624-28-2) belongs to pyridine. Pyridine is a relatively complex molecule and exhibits a number of different bands in IR spectra. Among others, the bands characterizing the ν8a and ν19b modes have been found to be sensitive to the coordination or protonation of the molecule. Note that the band that is diagnostic for the PyH+ ion at about 1545 cm− 1 (ν19b mode) does not overlap with any of the other bands.Recommanded Product: 624-28-2

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Kamata, Ryutaro’s team published research in ACS Applied Materials & Interfaces in 2019 | CAS: 1134-35-6

4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6) is used in the synthesis of a series of o-phenanthroline-substituted ruthenium(II) complexes.SDS of cas: 1134-35-6 Furthermore, 4,4′-Dimethyl-2,2′-bipyridine is used as a chemical Intermediate. It can be used for the determination of ferrous and cyanide compounds.

The author of 《Photoelectrochemical CO2 Reduction Using a Ru(II)-Re(I) Supramolecular Photocatalyst Connected to a Vinyl Polymer on a NiO Electrode》 were Kamata, Ryutaro; Kumagai, Hiromu; Yamazaki, Yasuomi; Sahara, Go; Ishitani, Osamu. And the article was published in ACS Applied Materials & Interfaces in 2019. SDS of cas: 1134-35-6 The author mentioned the following in the article:

A Ru(II)-Re(I) supramol. photocatalyst and a Ru(II) redox photosensitizer were both deposited successfully on a NiO electrode by using Me phosphonic acid anchoring groups and the electrochem. polymerization of the ligand vinyl groups of the complexes. This new mol. photocathode, poly-RuRe/NiO, adsorbed a larger amount of the metal complexes compared to one using only Me phosphonic acid anchor groups, and the stability of the complexes on the NiO electrode were much improved. The poly-RuRe/NiO acted as a photocathode for the photocatalytic reduction of CO2 at E = -0.7 V vs. Ag/AgCl under visible-light irradiation in an aqueous solution The poly-RuRe/NiO produced ∼2.5 times more CO, and its total faradaic efficiency of the reduction products improved from 57 to 85%. In the experiment, the researchers used many compounds, for example, 4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6SDS of cas: 1134-35-6)

4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6) is used in the synthesis of a series of o-phenanthroline-substituted ruthenium(II) complexes.SDS of cas: 1134-35-6 Furthermore, 4,4′-Dimethyl-2,2′-bipyridine is used as a chemical Intermediate. It can be used for the determination of ferrous and cyanide compounds.

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Sekioka, Ryuichi’s team published research in Bioorganic & Medicinal Chemistry in 2020 | CAS: 29682-15-3

Methyl 5-bromopicolinate(cas: 29682-15-3) belongs to pyridine. Pyridine is widely used in the precursor to agrochemicals and pharmaceuticals. Also, it is used as an important reagent and organic solvent.Formula: C7H6BrNO2

《Discovery of N-ethylpyridine-2-carboxamide derivatives as a novel scaffold for orally active γ-secretase modulators》 was published in Bioorganic & Medicinal Chemistry in 2020. These research results belong to Sekioka, Ryuichi; Honda, Shugo; Honjo, Eriko; Suzuki, Takayuki; Akashiba, Hiroki; Mitani, Yasuyuki; Yamasaki, Shingo. Formula: C7H6BrNO2 The article mentions the following:

Gamma-secretase modulators (GSMs) are promising disease-modifying drugs for Alzheimer’s disease because they can selectively decrease pathogenic amyloid-β42 (Aβ42) levels. Here we report the discovery of orally active N-ethylpyridine-2-carboxamide derivatives as GSMs. The isoindolinone moiety of 5-[8-(benzyloxy)-2-methylimidazo[1,2-a]pyridin-3-yl]-2-ethyl-2,3-dihydro-1H-isoindol-1-one hydrogen chloride (1a) was replaced with a picolinamide moiety. Optimization of the benzyl group significantly improved GSM activity and mouse microsomal stability. 5-{8-[([1,1′-Biphenyl]-4-yl)methoxy]-2-methylimidazo[1,2-a]pyridin-3-yl}-N-ethylpyridine-2-carboxamide hydrogen chloride (1v) potently reduced Aβ42 levels with an IC50 value of 0.091μM in cultured cells without inhibiting CYP3A4. Moreover, 1v demonstrated a sustained pharmacokinetic profile and significantly reduced brain Aβ42 levels in mice.Methyl 5-bromopicolinate(cas: 29682-15-3Formula: C7H6BrNO2) was used in this study.

Methyl 5-bromopicolinate(cas: 29682-15-3) belongs to pyridine. Pyridine is widely used in the precursor to agrochemicals and pharmaceuticals. Also, it is used as an important reagent and organic solvent.Formula: C7H6BrNO2

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Sinai, Adam’s team published research in European Journal of Organic Chemistry in 2020 | CAS: 13534-97-9

6-Bromopyridin-3-amine(cas: 13534-97-9) belongs to anime. Halogenation, in which one or more hydrogen atoms of an amine is replaced by a halogen atom, occurs with chlorine, bromine, and iodine, as well as with some other reagents, notably hypochlorous acid (HClO). With primary amines the reaction proceeds in two stages, producing N-chloro- and N,N-dichloro-amines, RNHCl and RNCl2, respectively. With tertiary amines, an alkyl group may be displaced by a halogen.Computed Properties of C5H5BrN2

《Aryl-Diadamantyl Phosphine Ligands in Palladium-Catalyzed Cross-Coupling Reactions: Synthesis, Structural Analysis, and Application》 was published in European Journal of Organic Chemistry in 2020. These research results belong to Sinai, Adam; Simko, Daniel Cs.; Szabo, Fruzsina; Paczal, Attila; Gati, Tamas; Benyei, Attila; Novak, Zoltan; Kotschy, Andras. Computed Properties of C5H5BrN2 The article mentions the following:

Synthesis, temperature-dependent NMR structure study and use of a new, stable and easily accessible aryl-diadamantylphosphine ligand family is reported. The bulky and electron-rich phosphorus center of the ligand enhances the catalytic activity of palladium in cross-coupling reactions of sterically demanding ortho-substituted aryl halides. In the authors’ study, the authors demonstrated the synthetic applicability of the new phosphine ligands in Buchwald-Hartwig and tosyl hydrazone coupling reactions.6-Bromopyridin-3-amine(cas: 13534-97-9Computed Properties of C5H5BrN2) was used in this study.

6-Bromopyridin-3-amine(cas: 13534-97-9) belongs to anime. Halogenation, in which one or more hydrogen atoms of an amine is replaced by a halogen atom, occurs with chlorine, bromine, and iodine, as well as with some other reagents, notably hypochlorous acid (HClO). With primary amines the reaction proceeds in two stages, producing N-chloro- and N,N-dichloro-amines, RNHCl and RNCl2, respectively. With tertiary amines, an alkyl group may be displaced by a halogen.Computed Properties of C5H5BrN2

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Yang, Dong’s team published research in Journal of the American Chemical Society in 2020 | CAS: 624-28-2

2,5-Dibromopyridine(cas: 624-28-2) belongs to pyridine. Pyridine’s structure is isoelectronic with that of benzene, but its properties are quite different. Pyridine is completely miscible with water, whereas benzene is only slightly soluble. Like all hydrocarbons, benzene is neutral (in the acid–base sense), but because of its nitrogen atom, pyridine is a weak base.Product Details of 624-28-2

《LaIII and ZnII Cooperatively Template a Metal-Organic Capsule》 was published in Journal of the American Chemical Society in 2020. These research results belong to Yang, Dong; Greenfield, Jake L.; Ronson, Tanya K.; von Krbek, Larissa K. S.; Yu, Le; Nitschke, Jonathan R.. Product Details of 624-28-2 The article mentions the following:

An organic subcomponent was designed with 2-formyl-8-aminoquinoline and triazole-pyridine ends. The relative orientations and geometries of these two ends enabled this subcomponent to assemble together with ZnII and LaIII cations to generate a heterobimetallic tetrahedral capsule. The LaIII cations each template three imine bonds that hold together a 3-fold-sym. metallo-ligand, defining the center of each tetrahedron face. The ZnII cations occupy the other ends of these C3 axes, defining the vertices of the tetrahedron. This is the first example where subcomponent self-assembly brought into being the faces of a polyhedron, as opposed to the vertices. Host-guest studies show pos. cooperative binding toward ReO4-, the encapsulation of which also resulted in the quenching of capsule fluorescence. In the experimental materials used by the author, we found 2,5-Dibromopyridine(cas: 624-28-2Product Details of 624-28-2)

2,5-Dibromopyridine(cas: 624-28-2) belongs to pyridine. Pyridine’s structure is isoelectronic with that of benzene, but its properties are quite different. Pyridine is completely miscible with water, whereas benzene is only slightly soluble. Like all hydrocarbons, benzene is neutral (in the acid–base sense), but because of its nitrogen atom, pyridine is a weak base.Product Details of 624-28-2

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem