Rice, Craig R. et al. published their research in European Journal of Inorganic Chemistry in 2002 |CAS: 75449-26-2

The Article related to transition metal aminobipyridine preparation structure, crystal structure transition metal aminobipyridine, Inorganic Chemicals and Reactions: Coordination Compounds and other aspects.Recommanded Product: [2,2′-Bipyridine]-3,3′-diamine

On August 31, 2002, Rice, Craig R.; Onions, Stuart; Vidal, Natalia; Wallis, John D.; Senna, Maria-Cristina; Pilkington, Melanie; Stoeckli-Evans, Helen published an article.Recommanded Product: [2,2′-Bipyridine]-3,3′-diamine The title of the article was The coordination chemistry of 3,3′-diamino-2,2′-bipyridine and its dication: Exploring the role of the amino groups by X-ray crystallography. And the article contained the following:

The synthesis and structural chem. of new divalent transition metal complexes of the bis-bidentate ligand 3,3′-diamino-2,2′-bipyridine (L1) and its dication L1H2 are described. Ligand L1 reacts with salts of divalent transition metals (Cu(II), Mn(II) and Zn) to afford the (1:1) metal-ligand complexes (2a-2d) as well as the tris complexes (3a-3f). All complexes were fully characterized by spectroscopic methods and the following compounds [Cu(L1)Cl2]2 (2a), [Cu(L1)(OAc)2] (2b), [Zn(L1)3][OTf]2 (3a), and [Zn(L1)3][ZnCl4] (3e and 3f) were structurally characterized. Results from single crystal x-ray diffraction measurements indicate that formation of an intramol. H bond between the two amino groups allows the ligand to coordinate divalent metal ions through their diimine binding sites. Also, the structure of compound 2a reveals that it crystallizes as a dimer in which each Cu ion is bound to two pyridine N atoms and two chloride ions in a distorted square planar arrangement, with a long axial contact from a neighboring amino group completing the approx. square-pyramidal geometry at CuII. Complexation of this ligand in acidic conditions afforded [Cu(L1H2)Cl4] (4), as well as the two salts [L1H2][CuCl4] (5a) and [L1H2][ZnCl4] (5b). All three compounds were structurally characterized and the dication (L1H2) displays a different coordination preference for the chelation of metal ions. In all three cases, both of the heterocyclic N atoms of the ligand are protonated, thus preventing chelation to the metal ion, although for compound 4 crystallog. studies reveal that the two amino functionalities coordinate the Cu(II) ion. The experimental process involved the reaction of [2,2′-Bipyridine]-3,3′-diamine(cas: 75449-26-2).Recommanded Product: [2,2′-Bipyridine]-3,3′-diamine

The Article related to transition metal aminobipyridine preparation structure, crystal structure transition metal aminobipyridine, Inorganic Chemicals and Reactions: Coordination Compounds and other aspects.Recommanded Product: [2,2′-Bipyridine]-3,3′-diamine

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Li, Li et al. published their research in CrystEngComm in 2013 |CAS: 52243-87-5

The Article related to copper viologen thiocyanate complex preparation crystal structure, absorption spectra copper viologen thiocyanate complex, Inorganic Chemicals and Reactions: Coordination Compounds and other aspects.Name: 1,1′-Dipropyl-[4,4′-bipyridine]-1,1′-diium bromide

Li, Li; Yue, Jun-Ming; Qiao, Yong-Zhen; Niu, Yun-Yin; Hou, Hong-Wei published an article in 2013, the title of the article was The side chain template effect in viologen on the formation of polypseudorotaxane architecture. Six novel metal coordination polymers and their properties.Name: 1,1′-Dipropyl-[4,4′-bipyridine]-1,1′-diium bromide And the article contains the following content:

The reaction of CuSCN (or CuCl2) in the presence of excess KSCN directed by viologen-based linear templates in a DMF-methanol system affords six coordination polymers, {(MV)[Cu2(SCN)4]}n (1, MV2+ = 1,1′-dimethyl-4,4′-bipyridinium), {(PrV)[Cu2(SCN)4]}n (2, PrV2+ = 1,1′-dipropyl-4,4′-bipyridinium), {(iPV)[Cu2(SCN)4]}n (3, iPV2+ = 1,1′-diisopropyl-4,4′-bipyridinium), [(1-iBV)Cu2(SCN)3]n (4, 1-iBV2+ = 1-isobutyl-4,4′-bipyridinium), {(iBV)[Cu2(SCN)4]}n (5, iBV2+ = 1,1′-diisobutyl-4,4′-bipyridinium), and {(PtV)[Cu2(SCN)4]}n (6, PtV2+ = 1,1′-dipentyl-4,4′-bipyridinium). The [Cu2(SCN)4]n anion in compounds 1, 3, and 5 adopts an infinite 2D polypseudorotaxane architecture and proved effectively that the stoppers at the end can enhance the polyrotaxane formation in the crystalline state, whereas the anion moieties in compounds 2 and 6 exhibit 1D linear architectures, suggesting dethreading from envelopes once solidifying from solution phase. Compound 4 was found to be a 2D coordination polymer with the organic ligand carrying a single charge. The side chain template effect of substituted group, UV-Vis diffuse reflectance spectra in the solid state and TGA properties of the six complexes are investigated. The experimental process involved the reaction of 1,1′-Dipropyl-[4,4′-bipyridine]-1,1′-diium bromide(cas: 52243-87-5).Name: 1,1′-Dipropyl-[4,4′-bipyridine]-1,1′-diium bromide

The Article related to copper viologen thiocyanate complex preparation crystal structure, absorption spectra copper viologen thiocyanate complex, Inorganic Chemicals and Reactions: Coordination Compounds and other aspects.Name: 1,1′-Dipropyl-[4,4′-bipyridine]-1,1′-diium bromide

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Zhao, Chongjian et al. published their research in Inorganic Chemistry Communications in 2014 |CAS: 636-73-7

The Article related to luminescence cadmium tetrazole coordination polymer, crystal structure cadmium tetrazole coordination polymer preparation, Inorganic Chemicals and Reactions: Coordination Compounds and other aspects.Electric Literature of 636-73-7

On October 31, 2014, Zhao, Chongjian; Li, Chuwen; Shen, Moyuan; Huang, Lanfen; Li, Qianhong; Hu, Mingyuan; Deng, Hong published an article.Electric Literature of 636-73-7 The title of the article was Syntheses, structures and photoluminescence of Cd(II) coordination polymers based on in situ synthesized bifunctional ligands. And the article contained the following:

By employing Cd(II) salt, NaN3, and CN-(CH2)n-NC (n = 1, 2) and with the absence or presence of secondary ligands, four new cadmium coordination frameworks, named, {[Cd4(btm)4(H2O)2]·3H2O}n (1); [Cd2(btm)2(H2O)]n (2); [Cd2(bte)(PMA)0.5(H2O)]n (3); and [Cd(tzp)(2,2′-bipy)]n (4) (H2btm = bis(tetrazole) methane: H2bte = 1,2-bis(tetrazole-5-yl)ethane; H2tzp = 1H-tetrazolate-5-propionic acid; bipy = bipyridine; PMA = 1,2,4,5-benzenetetracarboxylic acid) were synthesized via in situ hydrothermal reaction. Single crystal x-ray diffraction reveals that compounds 1-3 are all three-dimensional (3D) frameworks. Compound 1 is constructed by Cd1- and Cd3-btm2- layers and large bridging metalloligands. Compound 2 exhibits a 3D framework with two-dimensional (2D) Cd-btm2- (adopting μ6:κN1, N1′: κN2: κN3: κN4: κN3′: κN4’coordination mode) layers pillared by μ3:κN1, N1′: κN2: κN4′ btm2-. Compound 3 is built up by the Cd-bte2- layers and the linker PMA, with left- and right-handed helical chains arranged alternately. It is notable that btm2- takes on six different coordination modes in 1 and 2. Compound 4 represents a 2D layered framework, which can be simplified into a Shubnikov plane net (4.82̂) topol. network with 3-connected T shape linker tzp2- ligands. In addition, the research results show that compounds 1-4 exhibit different fluorescent behaviors and thermal stabilities. The experimental process involved the reaction of Pyridine-3-sulfonic acid(cas: 636-73-7).Electric Literature of 636-73-7

The Article related to luminescence cadmium tetrazole coordination polymer, crystal structure cadmium tetrazole coordination polymer preparation, Inorganic Chemicals and Reactions: Coordination Compounds and other aspects.Electric Literature of 636-73-7

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem