Jiao, Mingdong’s team published research in Organic Letters in 2020 | CAS: 197958-29-5

2-Pyridinylboronic acid(cas: 197958-29-5) belongs to pyridine. Pyridine is very deactivated towards electrophilic substitution with respect to benzene. For this reason classical formylation, using methods such as the Gattermann or Vilsmeier reactions, are not generally successful. HPLC of Formula: 197958-29-5

《Enantioselective Synthesis of 4-Cyanotetrahydroquinolines via Ni-Catalyzed Hydrocyanation of 1,2-Dihydroquinolines》 was published in Organic Letters in 2020. These research results belong to Jiao, Mingdong; Gao, Jihui; Fang, Xianjie. HPLC of Formula: 197958-29-5 The article mentions the following:

A Ni-catalyzed asym. hydrocyanation that enables the formation of 4-cyanotetrahydroquinolines in good yields with excellent enantioselectivities is presented herein. A variety of functional groups are well-tolerated, and a gram-scale reaction supports the synthetic potential of the transformation. Addnl., several crucial intermediates for pharmaceutically active agents, including a PGD2 receptor antagonist, are now accessible through asym. synthesis using this new protocol. In the part of experimental materials, we found many familiar compounds, such as 2-Pyridinylboronic acid(cas: 197958-29-5HPLC of Formula: 197958-29-5)

2-Pyridinylboronic acid(cas: 197958-29-5) belongs to pyridine. Pyridine is very deactivated towards electrophilic substitution with respect to benzene. For this reason classical formylation, using methods such as the Gattermann or Vilsmeier reactions, are not generally successful. HPLC of Formula: 197958-29-5

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Verma, Shalini’s team published research in Organic Letters in 2020 | CAS: 128071-75-0

2-Bromonicotinaldehyde(cas: 128071-75-0) belongs to pyridine. When pyridine is adsorbed on oxide surfaces or in porous materials, the following species are commonly observed: (i) pyridine coordinated to Lewis acid sites, (ii) pyridine H-bonded to weakly acidic hydroxyls, and (iii) protonated pyridine. At high coverage, physisorbed pyridine and protonated dimers can also be observed.Reference of 2-Bromonicotinaldehyde

《Aza-Henry Reaction: Synthesis of Nitronaphthylamines from 2-(Alkynyl)benzonitriles》 was written by Verma, Shalini; Kumar, Manoj; Verma, Akhilesh K.. Reference of 2-Bromonicotinaldehyde And the article was included in Organic Letters in 2020. The article conveys some information:

A transition-metal-free approach for construction of nitronaphthylamines has been developed for the first time through aza-henry, chemoselective, and regioselective annulation of 2-alkynylbenzonitriles with nitromethane. In addition, the strategy provides an elegant, operationally simple and atom-economical route for the synthesis of nitroamino substituted heterocyclic scaffolds, featuring a range of sensitive functional groups. The reaction could also devise acetonitrile and acetophenone as nucleophile. The protocol has been successfully implemented for late-stage modification of bioactive mols.2-Bromonicotinaldehyde(cas: 128071-75-0Reference of 2-Bromonicotinaldehyde) was used in this study.

2-Bromonicotinaldehyde(cas: 128071-75-0) belongs to pyridine. When pyridine is adsorbed on oxide surfaces or in porous materials, the following species are commonly observed: (i) pyridine coordinated to Lewis acid sites, (ii) pyridine H-bonded to weakly acidic hydroxyls, and (iii) protonated pyridine. At high coverage, physisorbed pyridine and protonated dimers can also be observed.Reference of 2-Bromonicotinaldehyde

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Ponpao, Nipaphorn’s team published research in RSC Advances in 2021 | CAS: 128071-75-0

2-Bromonicotinaldehyde(cas: 128071-75-0) belongs to pyridine. Pyridine’s structure is isoelectronic with that of benzene, but its properties are quite different. Pyridine is completely miscible with water, whereas benzene is only slightly soluble. Like all hydrocarbons, benzene is neutral (in the acid–base sense), but because of its nitrogen atom, pyridine is a weak base.Synthetic Route of C6H4BrNO

Ponpao, Nipaphorn; Senapak, Warapong; Saeeng, Rungnapha; Jaratjaroonphong, Jaray; Sirion, Uthaiwan published their research in RSC Advances in 2021. The article was titled 《Metal- and solvent-free synthesis of aniline- and phenol-based triarylmethanes via Bronsted acidic ionic liquid catalyzed Friedel-Crafts reaction》.Synthetic Route of C6H4BrNO The article contains the following contents:

A beneficial, scalable and efficient methodol. for the synthesis of aniline-based triarylmethanes was established through the double Friedel-Crafts reaction of com. aldehydes and primary, secondary or tertiary anilines using Bronsted acidic ionic liquid as a powerful catalyst, namely [bsmim][NTf2] (4-sulfono-1-butylmethylimidazolium trifluoromethanesulfonimide). This protocol was successfully performed under metal- and solvent-free conditions with a broad range of substrates, giving the corresponding aniline-based triarylmethane products in good to excellent yields (up to 99%). In addition, alternative aromatic nucleophiles such as phenols and electron-rich arenes were also studied using this useful approach to achieve a diversity of triarylmethane derivatives in high to excellent yields. The results came from multiple reactions, including the reaction of 2-Bromonicotinaldehyde(cas: 128071-75-0Synthetic Route of C6H4BrNO)

2-Bromonicotinaldehyde(cas: 128071-75-0) belongs to pyridine. Pyridine’s structure is isoelectronic with that of benzene, but its properties are quite different. Pyridine is completely miscible with water, whereas benzene is only slightly soluble. Like all hydrocarbons, benzene is neutral (in the acid–base sense), but because of its nitrogen atom, pyridine is a weak base.Synthetic Route of C6H4BrNO

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Tomas, Federico M. A.’s team published research in Polyhedron in 2021 | CAS: 1134-35-6

4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6) is used as a chemical Intermediate. It can be used for the determination of ferrous and cyanide compounds.Computed Properties of C12H12N2 Furthermore, 4,4′-Dimethyl-2,2′-bipyridine is used in the synthesis of a series of o-phenanthroline-substituted ruthenium(II) complexes.

Tomas, Federico M. A.; Peyrot, Analia M.; Fagalde, Florencia published their research in Polyhedron in 2021. The article was titled 《Synthesis, spectroscopic characterization and theoretical studies of polypyridine homoleptic Cu (I) complexes》.Computed Properties of C12H12N2 The article contains the following contents:

The authors focus on the synthesis and physicochem. characterization of four mononuclear copper(I) complexes with π-conjugated ligands substituted by Me groups of formulas [CuL2]+ with L = dmb, dmp, tmp and phen (dmb = 4,4′-dimethyl-2,2′-bipyridine; dmp = 5,6-dimethyl-1,10- phenanthroline; tmp = 3,4,7,8-tetramethyl-1,10-phenanthroline and phen = 1,10-phenanthroline). By TD-DFT it was possible to discuss and rationalize the geometry of the complexes and the origin of metal-to-ligand charge transfer in a square-planar distortion state. In the part of experimental materials, we found many familiar compounds, such as 4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6Computed Properties of C12H12N2)

4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6) is used as a chemical Intermediate. It can be used for the determination of ferrous and cyanide compounds.Computed Properties of C12H12N2 Furthermore, 4,4′-Dimethyl-2,2′-bipyridine is used in the synthesis of a series of o-phenanthroline-substituted ruthenium(II) complexes.

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Singh, Anshu’s team published research in Dalton Transactions in 2021 | CAS: 1122-54-9

4-Acetylpyridine(cas: 1122-54-9) belongs to pyridine. Pyridine is very deactivated towards electrophilic substitution with respect to benzene. For this reason classical formylation, using methods such as the Gattermann or Vilsmeier reactions, are not generally successful. Related Products of 1122-54-9

Singh, Anshu; Maji, Ankur; Joshi, Mayank; Choudhury, Angshuman R.; Ghosh, Kaushik published their research in Dalton Transactions in 2021. The article was titled 《Designed pincer ligand supported Co(II)-based catalysts for dehydrogenative activation of alcohols: Studies on N-alkylation of amines, α-alkylation of ketones and synthesis of quinolines》.Related Products of 1122-54-9 The article contains the following contents:

Base-metal catalysts Co1, Co2 and Co3 were synthesized from designed pincer ligands L1, L2 and L3 having NNN donor atoms, resp. Co1, Co2 and Co3 were characterized by IR, UV-visible and ESI-MS spectroscopic studies. Single crystal x-ray diffraction studies were studied to authenticate the mol. structures of Co1 and Co3. Catalysts Co1, Co2 and Co3 were used to study the dehydrogenative activation of alcs. for N-alkylation of amines, α-alkylation of ketones and synthesis of quinolines. Under optimized reaction conditions, a broad range of substrates including alcs., anilines and ketones were exploited. Control experiments for N-alkylation of amines, α-alkylation of ketones and synthesis of quinolines were examined to understand the reaction pathway. ESI-MS spectral studies were studied to characterize Co-alkoxide and Co-hydride intermediates. Reduction of styrene by evolved H gas during the reaction was studied to authenticate the dehydrogenative nature of the catalysts. Probable reaction pathways are proposed for N-alkylation of amines, α-alkylation of ketones and synthesis of quinolines from control experiments and detection of reaction intermediates. In the experimental materials used by the author, we found 4-Acetylpyridine(cas: 1122-54-9Related Products of 1122-54-9)

4-Acetylpyridine(cas: 1122-54-9) belongs to pyridine. Pyridine is very deactivated towards electrophilic substitution with respect to benzene. For this reason classical formylation, using methods such as the Gattermann or Vilsmeier reactions, are not generally successful. Related Products of 1122-54-9

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Feng, Zengqiang’s team published research in Organic Letters in 2021 | CAS: 94928-86-6

fac-Tris(2-phenylpyridine)iridium(cas: 94928-86-6) belongs to pyridine. Pyridine is very deactivated towards electrophilic substitution with respect to benzene. For this reason classical formylation, using methods such as the Gattermann or Vilsmeier reactions, are not generally successful. Electric Literature of C33H24IrN3

Feng, Zengqiang; Zhu, Baoxiang; Dong, Bingbing; Cheng, Li; Li, Yunpu; Wang, Zechao; Wu, Junliang published their research in Organic Letters in 2021. The article was titled 《Visible-Light-Promoted Synthesis of α-CF2H-Substituted Ketones by Radical Difluoromethylation of Enol Acetates》.Electric Literature of C33H24IrN3 The article contains the following contents:

An efficient and novel visible-light-promoted radical difluoromethylation of enol acetates for the synthesis of α-CF2H-substituted ketones were described. Upon irradiation under blue LED with catalytic amounts of fac-Ir(ppy)3, this photocatalytic procedure employed difluoromethyltriphenylphosphonium bromide as a radical precursor. Various α-CF2H-substituted ketones were successfully created via designed systems based on the SET process. The methodol. were provided an operationally simple process with broad functional group compatibility. In the part of experimental materials, we found many familiar compounds, such as fac-Tris(2-phenylpyridine)iridium(cas: 94928-86-6Electric Literature of C33H24IrN3)

fac-Tris(2-phenylpyridine)iridium(cas: 94928-86-6) belongs to pyridine. Pyridine is very deactivated towards electrophilic substitution with respect to benzene. For this reason classical formylation, using methods such as the Gattermann or Vilsmeier reactions, are not generally successful. Electric Literature of C33H24IrN3

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Gong, Zhiming’s team published research in Organic Electronics in 2021 | CAS: 624-28-2

2,5-Dibromopyridine(cas: 624-28-2) belongs to pyridine. Pyridines form stable salts with strong acids. Pyridine itself is often used to neutralize acid formed in a reaction and as a basic solvent. HPLC of Formula: 624-28-2

Gong, Zhiming; Wang, Ru; Jiang, Yue; Kong, Xiangyu; Lin, Yue; Xu, Zhengjie; Zhou, Guofu; Liu, Jun-Ming; Kempa, Krzysztof; Gao, Jinwei published an article in 2021. The article was titled 《Novel D-A-D type small-molecular hole transport materials for stable inverted perovskite solar cells》, and you may find the article in Organic Electronics.HPLC of Formula: 624-28-2 The information in the text is summarized as follows:

Hole transport materials (HTMs), as a critical role in the hole extraction and transportation processes, highly influence the efficiency and stability of perovskite solar cells (PSCs). Despite that several efficient dopant-free HTMs have been reported, there is still no clear structure-property relationship that could give instructions for the rational mol. design of efficient HTMs. Thus, in this work, a series of donor-acceptor-donor (D-A-D) type carbazole-based small mols., TM-1 to TM-4, have been carefully designed and synthesized. By varing the electron acceptor unit from benzene to pyridine, pyrazine and diazine, their packing structure in single crystals, optical and electronic properties have shown a great difference. While as dopant-free HTM in p-i-n type PSCs, TM-2 improved the device photovoltaic performance with a power conversion efficiency from 15.02% (based on PEDOT:PSS) to 16.13%. Moreover, the unencapsulated device based on TM-2 retains about 80% of its initial efficiency after 500 h storage in ambient environment, showing the superior stability.2,5-Dibromopyridine(cas: 624-28-2HPLC of Formula: 624-28-2) was used in this study.

2,5-Dibromopyridine(cas: 624-28-2) belongs to pyridine. Pyridines form stable salts with strong acids. Pyridine itself is often used to neutralize acid formed in a reaction and as a basic solvent. HPLC of Formula: 624-28-2

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Griffin, Jeremy D.’s team published research in ACS Catalysis in 2021 | CAS: 3510-66-5

2-Bromo-5-methylpyridine(cas: 3510-66-5) belongs to pyridine. Pyridine is a relatively complex molecule and exhibits a number of different bands in IR spectra. Among others, the bands characterizing the ν8a and ν19b modes have been found to be sensitive to the coordination or protonation of the molecule. Note that the band that is diagnostic for the PyH+ ion at about 1545 cm− 1 (ν19b mode) does not overlap with any of the other bands.Product Details of 3510-66-5

Griffin, Jeremy D.; Vogt, David B.; Du Bois, J.; Sigman, Matthew S. published an article in 2021. The article was titled 《Mechanistic Guidance Leads to Enhanced Site-Selectivity in C-H Oxidation Reactions Catalyzed by Ruthenium bis(Bipyridine) Complexes》, and you may find the article in ACS Catalysis.Product Details of 3510-66-5 The information in the text is summarized as follows:

The development of an operationally simple C-H oxidation protocol using an acid-stable, bis(bipyridine)Ru catalyst is described. Electronic differences remote to the site of C-H functionalization are found to affect product selectivity. Site-selectivity is further influenced by the choice of reaction solvent, with highest levels of 2° methylene oxidation favored in aqueous dichloroacetic acid. A statistical model is detailed that correlates product selectivity outcomes with computational parameters describing the relative “”electron-richness”” of C-H bonds. The results came from multiple reactions, including the reaction of 2-Bromo-5-methylpyridine(cas: 3510-66-5Product Details of 3510-66-5)

2-Bromo-5-methylpyridine(cas: 3510-66-5) belongs to pyridine. Pyridine is a relatively complex molecule and exhibits a number of different bands in IR spectra. Among others, the bands characterizing the ν8a and ν19b modes have been found to be sensitive to the coordination or protonation of the molecule. Note that the band that is diagnostic for the PyH+ ion at about 1545 cm− 1 (ν19b mode) does not overlap with any of the other bands.Product Details of 3510-66-5

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Cao, Liang’s team published research in Nature Communications in 2021 | CAS: 1692-25-7

Pyridin-3-ylboronic acid(cas: 1692-25-7) belongs to pyridine. When pyridine is adsorbed on oxide surfaces or in porous materials, the following species are commonly observed: (i) pyridine coordinated to Lewis acid sites, (ii) pyridine H-bonded to weakly acidic hydroxyls, and (iii) protonated pyridine. At high coverage, physisorbed pyridine and protonated dimers can also be observed.SDS of cas: 1692-25-7

Cao, Liang; Zhao, He; Guan, Rongqing; Jiang, Huanfeng; Dixneuf, Pierre. H.; Zhang, Min published an article in 2021. The article was titled 《Practical iridium-catalyzed direct α-arylation of N-heteroarenes with (hetero)arylboronic acids by H2O-mediated H2 evolution》, and you may find the article in Nature Communications.SDS of cas: 1692-25-7 The information in the text is summarized as follows:

Despite the widespread applications of 2-(hetero)aryl N-heteroarenes in numerous fields of science and technol., universal access to such compounds is hampered due to the lack of a general method for their synthesis. Herein, by a H2O-mediated H2-evolution cross-coupling strategy, an iridium(III)-catalyzed facile method to direct α-arylation of N-heteroarenes with both aryl and heteroaryl boronic acids, proceeding with broad substrate scope and excellent functional compatibility, oxidant and reductant-free conditions, operational simplicity, easy scalability, and no need for prefunctionalization of N-heteroarenes is reported. This method is applicable for structural modification of biomedical mols., and offers a practical route for direct access to 2-(hetero)aryl N-heteroarenes, a class of potential cyclometalated CN̂ ligands and NN̂ bidentate ligands that are difficult to prepare with the existing α-C-H arylation methods, thus filling an important gap in the capabilities of synthetic organic chem. In the experiment, the researchers used Pyridin-3-ylboronic acid(cas: 1692-25-7SDS of cas: 1692-25-7)

Pyridin-3-ylboronic acid(cas: 1692-25-7) belongs to pyridine. When pyridine is adsorbed on oxide surfaces or in porous materials, the following species are commonly observed: (i) pyridine coordinated to Lewis acid sites, (ii) pyridine H-bonded to weakly acidic hydroxyls, and (iii) protonated pyridine. At high coverage, physisorbed pyridine and protonated dimers can also be observed.SDS of cas: 1692-25-7

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Xu, Qun’s team published research in RSC Medicinal Chemistry in 2021 | CAS: 31106-82-8

2-(Bromomethyl)pyridine hydrobromide(cas: 31106-82-8) belongs to pyridine. When pyridine is adsorbed on oxide surfaces or in porous materials, the following species are commonly observed: (i) pyridine coordinated to Lewis acid sites, (ii) pyridine H-bonded to weakly acidic hydroxyls, and (iii) protonated pyridine. At high coverage, physisorbed pyridine and protonated dimers can also be observed.COA of Formula: C6H7Br2N

Xu, Qun; Li, Tian; Chen, Hekai; Kong, Jun; Zhang, Liwei; Yin, Hang published an article in 2021. The article was titled 《Design and optimisation of a small-molecule TLR2/4 antagonist for anti-tumour therapy》, and you may find the article in RSC Medicinal Chemistry.COA of Formula: C6H7Br2N The information in the text is summarized as follows:

A small-mol. co-inhibitor that targets the TLR2/4 signalling pathway were developed. After high-throughput screening of a compound library containing 14400 small mols., followed by hit-to-lead structural optimization, the compound I was finally obtained, which has effective inhibitory properties against the TLR2/4 signalling pathways. This compound was found to significantly inhibit multiple pro-inflammatory cytokines released by RAW264.7 cells. This was followed by compound I demonstrating promising efficacy in subsequent anti-tumor experiments The current results provided a novel understanding of the role of TLR2/4 in cancer and a novel strategy for anti-tumor therapy. After reading the article, we found that the author used 2-(Bromomethyl)pyridine hydrobromide(cas: 31106-82-8COA of Formula: C6H7Br2N)

2-(Bromomethyl)pyridine hydrobromide(cas: 31106-82-8) belongs to pyridine. When pyridine is adsorbed on oxide surfaces or in porous materials, the following species are commonly observed: (i) pyridine coordinated to Lewis acid sites, (ii) pyridine H-bonded to weakly acidic hydroxyls, and (iii) protonated pyridine. At high coverage, physisorbed pyridine and protonated dimers can also be observed.COA of Formula: C6H7Br2N

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem