Yu, Weiqun’s team published research in FASEB Journal in 36 | CAS: 21829-25-4

FASEB Journal published new progress about 21829-25-4. 21829-25-4 belongs to pyridine-derivatives, auxiliary class Membrane Transporter/Ion Channel,Calcium Channel, name is Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, and the molecular formula is C16H20N2, Name: Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate.

Yu, Weiqun published the artcileReviving Cav1.2 as an attractive drug target to treat bladder dysfunction, Name: Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, the publication is FASEB Journal (2022), 36(1), e22118, database is CAplus and MEDLINE.

A review. Inhibition of bladder contraction with antimuscarinics is a common approach to treat bladder hyperactivity, and the L-type voltage-gated calcium channel α1C (Cav1.2) is crucial for bladder contractility. Therefore, strategies aimed at inhibiting Cav1.2 appear warranted. However, multiple clin. trials that attempted to treat bladder overactivity with calcium channel blockers (CCBs) have been unsuccessful, creating an unsolved mystery. In contrast, cardiologists and epidemiologists have reported strong associations between CCB use and bladder hyperactivity, opposing expectations of urologists. Recent findings from our lab offer a potential explanation. We have demonstrated that ketamine which can cause cystitis, functions, like nifedipine, as a Cav1.2 antagonist. We also show that a Cav1.2 agonist which potentiates muscle contraction, rather than antagonizing it, can increase the volume of voids and reduce voiding frequency. This perspective will discuss in detail the unsuccessful urol. trials of CCBs and the promise of Cav1.2 agonists as potential novel therapies for bladder dysfunctions.

FASEB Journal published new progress about 21829-25-4. 21829-25-4 belongs to pyridine-derivatives, auxiliary class Membrane Transporter/Ion Channel,Calcium Channel, name is Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, and the molecular formula is C16H20N2, Name: Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate.

Referemce:
https://en.wikipedia.org/wiki/Pyridine,
Pyridine | C5H5N – PubChem

Watanabe, Takashi’s team published research in Fain Kemikaru in 42 | CAS: 636-73-7

Fain Kemikaru published new progress about 636-73-7. 636-73-7 belongs to pyridine-derivatives, auxiliary class Pyridine,Sulfonic acid, name is Pyridine-3-sulfonic acid, and the molecular formula is C4H7BN2O2, Quality Control of 636-73-7.

Watanabe, Takashi published the artcileOrganic synthesis unit process-thiochemicals and heterocyclic compounds: heterocyclic compounds (part 1), Quality Control of 636-73-7, the publication is Fain Kemikaru (2013), 42(8), 53-66, database is CAplus.

Unit processes of various heterocyclic compounds including furan derivatives, THF or its derivatives, chroman, thiophene or its derivatives, tetrahydrothiophene, pyrrole or its derivatives, pyrrolidine or its derivatives, indole derivative, pyridine derivatives, piperidine derivatives, and quinoline or its derivatives are described. Thus, 2,6-dibromo-4-nitrophenol 8, glycerin 20, and concentrated H3PO4 12 g were charged to a 3-neck flask fitted with a stirrer, a reflux condenser, and a thermometer, cooled, treated slowly with concentrated H2SO4 with stirring well, heated in a oil bath at 150-160° for 3 h with gentle refluxing, and cooled. Water (∼150 mL) was added to the flask content solidified, throughly pulverized, and filtered to sep. the insoluble residue and the filtrate. The insoluble residue was immersed in warm 5% aqueous HCl solution and left to be cooled to readily precipitate colorless needle crystals which were filtered off. The filtrate was concentrated to give addnl. crystalline salt. The combined crystalline salt (3.55 g) was added to slightly acidic aqueous Na2CO3 solution, throughly stirred, left to stand for ∼20 min, and the free amine formed (2.87 g) was filtered off and recrystallized from acetone to give 7-bromo-6-hydroxyquinoline. The filtrate from the aqueous Na2CO3 solution was neutralized with Na2CO3, followed by filtering off the precipitated free amine (0.72 g) and recrystallization from acetone to give 7-bromo-6-hydroxyquinoline in ∼62% as crude product.

Fain Kemikaru published new progress about 636-73-7. 636-73-7 belongs to pyridine-derivatives, auxiliary class Pyridine,Sulfonic acid, name is Pyridine-3-sulfonic acid, and the molecular formula is C4H7BN2O2, Quality Control of 636-73-7.

Referemce:
https://en.wikipedia.org/wiki/Pyridine,
Pyridine | C5H5N – PubChem

Vecchio-Sadus, Angelica M.’s team published research in Transition Metal Chemistry (London) in 20 | CAS: 2215-33-0

Transition Metal Chemistry (London) published new progress about 2215-33-0. 2215-33-0 belongs to pyridine-derivatives, auxiliary class Pyridine,Amine, name is 2-((2-(Pyridin-2-yl)hydrazono)methyl)pyridine, and the molecular formula is C4Br2N2O4S, SDS of cas: 2215-33-0.

Vecchio-Sadus, Angelica M. published the artcileElectrochemical synthesis of neutral transition metal(II) (Fe, Co, Ni, Cu, Zn) complexes of pyridine-2-carbaldehyde pyridine-2′-ylhydrazone and several analogs, SDS of cas: 2215-33-0, the publication is Transition Metal Chemistry (London) (1995), 20(3), 256-61, database is CAplus.

Neutral transition metal(II) complexes of pyridine-2-carbaldehyde pyridine-2′-ylhydrazone (papyH) and several analogs were prepared by electrochem. synthesis. [M(papy)2] (M = Fe, Co, Ni, Cu or Zn) were obtained mostly as red-green dichroic substances as a result of the extended π-conjugation system in the anionic hydrazone. Vibrational and electronic spectra confirm the presence of the anionic hydrazone and its tridentate coordination to the metal center.

Transition Metal Chemistry (London) published new progress about 2215-33-0. 2215-33-0 belongs to pyridine-derivatives, auxiliary class Pyridine,Amine, name is 2-((2-(Pyridin-2-yl)hydrazono)methyl)pyridine, and the molecular formula is C4Br2N2O4S, SDS of cas: 2215-33-0.

Referemce:
https://en.wikipedia.org/wiki/Pyridine,
Pyridine | C5H5N – PubChem

Vecchio-Sadus, Angelica M.’s team published research in Transition Metal Chemistry (London) in 20 | CAS: 2215-33-0

Transition Metal Chemistry (London) published new progress about 2215-33-0. 2215-33-0 belongs to pyridine-derivatives, auxiliary class Pyridine,Amine, name is 2-((2-(Pyridin-2-yl)hydrazono)methyl)pyridine, and the molecular formula is C4Br2N2O4S, Category: pyridine-derivatives.

Vecchio-Sadus, Angelica M. published the artcileElectrosynthesis and magnetic behavior of neutral cobalt(II) complexes of pyridine-2-carbaldehyde pyridin-2′-ylhydrazone (papyH) and its analogs, Category: pyridine-derivatives, the publication is Transition Metal Chemistry (London) (1995), 20(1), 38-45, database is CAplus.

Neutral cobalt(II) complexes with the tridentate N-heterocyclic ligand pyridine-2-carbaldehyde pyridin-2′-ylhydrazone (papyH) and its analogs were prepared by the electrochem. oxidation of cobalt in an acetone solution of the hydrazone. [Co(papy)2] were obtained as red-green dichroic microcrystals due to the extended π-conjugation system in the anionic ligand. The magnetic moments of the octahedral cobalt(II) chelates decrease continuously from μeff = 1.81-4.63 μB at room temperature to 1.7-4.08 μB at ∼90 K. The changes in magnetic moment were accounted for by a 4T12E spin crossover system.

Transition Metal Chemistry (London) published new progress about 2215-33-0. 2215-33-0 belongs to pyridine-derivatives, auxiliary class Pyridine,Amine, name is 2-((2-(Pyridin-2-yl)hydrazono)methyl)pyridine, and the molecular formula is C4Br2N2O4S, Category: pyridine-derivatives.

Referemce:
https://en.wikipedia.org/wiki/Pyridine,
Pyridine | C5H5N – PubChem

Updegraff, D. M.’s team published research in Journal of Infectious Diseases in 114 | CAS: 971-66-4

Journal of Infectious Diseases published new progress about 971-66-4. 971-66-4 belongs to pyridine-derivatives, auxiliary class Pyridine,Benzene, name is Triphenyl(pyridin-1-ium-1-yl)borate, and the molecular formula is C19H22BNO5, Application of Triphenyl(pyridin-1-ium-1-yl)borate.

Updegraff, D. M. published the artcileTriarylborane complexes, a new series of broad-spectrum germicides, Application of Triphenyl(pyridin-1-ium-1-yl)borate, the publication is Journal of Infectious Diseases (1964), 304-10, database is CAplus.

More than 100 coordination complexes of triarylboranes with amines and substituted phosphines were screened against bacteria and fungi, and selected members were also screened against protozoa. The chem. stable complexes of triphenylborane and tris(para-substituted phenyl)borane were powerful broad-spectrum germicides, fungicides, and protozoicides.

Journal of Infectious Diseases published new progress about 971-66-4. 971-66-4 belongs to pyridine-derivatives, auxiliary class Pyridine,Benzene, name is Triphenyl(pyridin-1-ium-1-yl)borate, and the molecular formula is C19H22BNO5, Application of Triphenyl(pyridin-1-ium-1-yl)borate.

Referemce:
https://en.wikipedia.org/wiki/Pyridine,
Pyridine | C5H5N – PubChem

Torssell, Kurt’s team published research in Acta Chemica Scandinavica (1947-1973) in 21 | CAS: 971-66-4

Acta Chemica Scandinavica (1947-1973) published new progress about 971-66-4. 971-66-4 belongs to pyridine-derivatives, auxiliary class Pyridine,Benzene, name is Triphenyl(pyridin-1-ium-1-yl)borate, and the molecular formula is C10H10CoF6P, Quality Control of 971-66-4.

Torssell, Kurt published the artcilePositive halogen compounds. VI. Preparation of alkoxydimethylsulfonium salts and their role in the Kornblum oxidation. Revision of the structure for the olefin-bromotrinitromethane adduct, Quality Control of 971-66-4, the publication is Acta Chemica Scandinavica (1947-1973) (1967), 21(1), 1-14, database is CAplus.

cf. CA 63: 6839b; 65: 19963b. Structure I for the reaction product of BrC(NO2)3 and cyclohexene was revised to II (R = 2-trans-bromocyclohexyl) (III). Treatment of 0.2 g. III in 1 ml. EtOAc with 0.2 g. NaBPh4 gave ROS+Me2B-Ph4 (IV, R = 2-bromocyclohexyl) (V), m. 138-40° (decomposition). III (0.2 g.) was heated with 1 ml. iso-BuOH at 55-6° 45 min. and treated with 0.2 g. NaBPh4 in 1 ml. EtOAc to give 0.19 g. IV (R = iso-Bu) (VI) m. 141-3° (decomposition). ClCO2Bu-iso prepared from 0.16 g. iso-BuOH and a slight excess of COCl2 (10% in ether) was treated, after evaporation of ether, with 1 ml. Me2SO and, after 0.5 hr., 0.7 g. NaBPh4 in 6 ml. 1:1 MeOH-water mixture to give 0.4 g. IV (R = Et), m. 150-60°, remelts ∼260°. III (1 g.) in 4 ml. MeOH kept at 40-50° 20 min., evaporated to half volume in vacuo, and treated with 10 ml. CCl4 to give 0.55 g. II (R = Me). II (R = Me) (0.25 g.) in 1 ml. MeOH was treated with 0.4 g. NaBPh4 in 1 ml. MeOH to give 0.38 g. IV (R = Me) (VII). Me2SO (0.3 g.) was mixed with 0.5 g. Me2SO4, kept at room temperature 24 hrs., treated with 0.75 g. KC(NO2)3 in 5 ml. dimethoxyethane, filtered from KMeSO4, concentrated to 0.5 volume in vacuo, and treated with 10 ml. CCl4 to give 0.3 g. VII, m. 51-2° (decomposition). Treatment of a mixture of 0.5 g. Me2SO4 and 0.3 g. Me2SO with 1.4 g. NaBPh4 in 10 ml. MeOH gave 0.9 g. VII. A bromonium ion (VIII) is suggested. VII (0.2 g.) was heated to 190° in a small bulb tube until gas evolution ceased (∼10 min.) to give 40 mg. condensate composed of benzene and MeOCH2SMe (ir and N.M.R.); the remainder was partially crystalline and gave Ph3BOSMe2 (IX), m. 160-3°. IX can also be obtained by addition of 0.1 ml. concentrated HCl to 0.2 g. NaBPh4 in 2 ml. water. Treatment of 50 mg. IX in 3 ml. EtOAc with 50 mg. pyridine gave Ph3BQ (Q = 1-pyridyl), m. 210° (decomposition), which was also obtained by Pfitzner-Moffat oxidation Pyrolysis of V at 130-40° 5 min. gave mostly benzene and a small amount IX, and pyrolysis of V in Me2SO gave a somewhat higher yield of carbonyl compounds and trans-2-bromocyclohexanol. Thus, the Kornblum oxidation and Barton’s modification (CA 61: 2958e) proceeds via an intermediary sulfonium ion, which collapses to a carbonyl compound and Me2S either by the reaction (1) or a cyclic mechanism (2), giving Me2S and CD3SCD2H when Me2CHCH2OS+(CD3)2B-Ph4 was pyrolyzed. The oxidation follows the mechanism (1) only if the α-proton is activated as in p-BrC6H4COCH2OS+Me2. A mechanism (3) for Pfitzner and Moffat oxidation (CA 64: 6709g) was suggested to proceed via a complex (X). Magnetic nonequivalence for S-methyl resonance peak of V (a doublet, separation 1.7 Hz.) was found. N.M.R. spectrum of VII or II (R = Me) underwent a drastic change when the compounds were heated in (CD3)2SO at 65°. After 1 hr., the absorption of SMe at δ = 3.29 disappeared and a new peak appeared at δ = 2.57 ppm. The peak at δ = 3.97 ppm. had the same intensity as before and only traces of Me2S were detected. The result suggested a carbonium ion exchange (4) comparable with proton exchange in water. The reaction is completely reversible because when XI was dissolved in Me2SO, VII was regenerated. Addition of NaI to VII gave a rapid change of spectrum showing a reaction, Me2SO+Me + NaI → Me2SO + MeI + Na+. Pyrolysis of VII to MeOCH2SMe resembles the Pummerer rearrangement.

Acta Chemica Scandinavica (1947-1973) published new progress about 971-66-4. 971-66-4 belongs to pyridine-derivatives, auxiliary class Pyridine,Benzene, name is Triphenyl(pyridin-1-ium-1-yl)borate, and the molecular formula is C10H10CoF6P, Quality Control of 971-66-4.

Referemce:
https://en.wikipedia.org/wiki/Pyridine,
Pyridine | C5H5N – PubChem

Thomas, K. V.’s team published research in Biofouling in 17 | CAS: 971-66-4

Biofouling published new progress about 971-66-4. 971-66-4 belongs to pyridine-derivatives, auxiliary class Pyridine,Benzene, name is Triphenyl(pyridin-1-ium-1-yl)borate, and the molecular formula is C5H5F3O2, Related Products of pyridine-derivatives.

Thomas, K. V. published the artcileThe environmental fate and behaviour of antifouling paint booster biocides: A review, Related Products of pyridine-derivatives, the publication is Biofouling (2001), 17(1), 73-86, database is CAplus.

A review with references Antifouling paint booster biocides are a group of organic compounds added to antifouling paints to improve their efficacy. They have become prevalent since the requirement for alternative antifouling paints formulations for small boats (<25m). This need followed a ban on the use of triorganotin biocides in antifouling paints for small boats, in the late 1980’s. Worldwide, around eighteen compounds are currently used as antifouling biocides, viz. benzmethylamide, chlorothalonil, copper pyrithione, dichlofluanid, diuron, fluorofolpet, Irgarol 1051, Sea-Nine 211, Mancozeb, Polyphase, pyridine-triphenylborane, TCMS (2,3,5,6-tetrachloro-4-methylsulfonyl pyridine), TCMTB [2-(thiocyanomethylthio)benzothiazole], Thiram, tolylfluanid, zinc pyrithione (ZPT), ziram and Zineb. Any booster biocide released into the environment is subjected to a complex set of processes. These processes include transport mechanisms, transformation, degradation, cross media partitioning, and bioaccumulation. This paper reviews the fate and behavior data currently available in the public domain concerning antifouling paint booster biocides.

Biofouling published new progress about 971-66-4. 971-66-4 belongs to pyridine-derivatives, auxiliary class Pyridine,Benzene, name is Triphenyl(pyridin-1-ium-1-yl)borate, and the molecular formula is C5H5F3O2, Related Products of pyridine-derivatives.

Referemce:
https://en.wikipedia.org/wiki/Pyridine,
Pyridine | C5H5N – PubChem

Suzuki, Yasuyuki’s team published research in Yakugaku Zasshi in 81 | CAS: 18437-58-6

Yakugaku Zasshi published new progress about 18437-58-6. 18437-58-6 belongs to pyridine-derivatives, auxiliary class Pyridine,Amine, name is 4-Amino-2-picoline, and the molecular formula is C11H9ClN2O, Synthetic Route of 18437-58-6.

Suzuki, Yasuyuki published the artcileReactions of 4-pyridine- and 4-quinolinesulfonic acids with amines, Synthetic Route of 18437-58-6, the publication is Yakugaku Zasshi (1961), 1146-50, database is CAplus.

4-Pyridinesulfonic acid, 4-HO3SC5H4N, (I) (1.6 g.) in 16 ml. 28% NH4OH and a small amount of ZnCl2 in an autoclave heated 2 hrs. at 150-60° cooled, 10 ml. 2N NaOH added, the NH4OH removed and the product extracted with CHCl3 gave 0.65 g. 4H2NC5H4N, m. 157-8°. 2,4-Me(HO3S)C5H3N (3 g.), 30 ml. 28% NH4OH and a small amount ZnCl2 in an autoclave heated 24 hrs. at 150-60° and the product treated as above gave 1.21 g. 2,4-Me(H2N)C5H3N, m. 94-5°. Similarly prepared were the following amino compounds (product, % yield, and m.p. given): 3,4-Me(H2N)C5H3N, 57.2, 107.5-9.0°; 2,6,4-Me2(H2N)C5H2N, 70.8, 192-3°; [from 4-HO3SC9H6N (II)] 4-H2NC9H6N, 79.5, 153°. I (1.6 g.), 10 ml. 33% MeNH2 and a small amount of ZnCl2 heated 24 hrs. at 130° gave 0.87 g. 4-MeNHC5H4N; picrate, m. 122-4°. Similarly, I and Me2NH yielded 72.5% 4-Me2NC5H4N, m. 112-13° (picrate, m. 204°); II and MeNH2 yielded 88.3% 4-MeNHC9H6N, m. 224°; II and Me2NH yielded 76.3% 4-Me2NC9H6N, b10 167° (picrate, m. 192°). 2-HO3SC5H4N (1.6 g.), 3.2 ml. 80% N2H4.H2O, 7 ml. H2O, and a small amount of ZnCl2 in an autoclave heated 24 hrs. at 100-5°, the solution filtered, the filtrate concentrated in vacuo, the residue in 10 ml. 50% KOH extracted with Et2O, and the picrate formed gave 2.1 g. 2-H2NNHC5H4N picrate, m. 162-3° (decomposition). Similarly prepared were the following hydrazine derivatives (starting material, product, % yield and m.p. or m.p. of its salt given): I, 4-H2NNHC5H4N (III), 72, HCl salt, 242-4°; 2-HO3SC9H6N, 2-H2NNHC9H6N, 64.5, picrate, 187-9° (decomposition); II, 4-H2NNHC9H6N (IV), 81.2, HCl salt, 3078°; 2,4-Me(HO3S)C9H5N, 2,4-Me(H2NNH)C9H5N, 73.3, picrate, 206° (decomposition). 4-H2NNHC9H6N.HCl (0.5 g.) in 10 ml. H2O, 2 ml. EtOH and 1 ml. 10% NaOH, while refluxing, treated dropwise with 15 ml. 10% CuSO4, refluxed 1 hr., refluxed 1 hr. with 5 ml. 10% NaOH and the product steam distilled gave 0.25 g. C9H7N; picrate, m. 202-3°. III.HCl (1 g.) in 50 ml. absolute EtOH treated with EtONa (0.16 g. Na and 7 ml. EtOH), the NaCl removed, the solution concentrated to 10 ml., refluxed 1 hr. with 0.8 g. Et pyruvate and the product concentrated gave 1.05 g. Et pyruvate 4-pyridylhydrazone, columns, m. 128-30°. III.HCl (1.45 g.) in 40 ml. MeOH treated with 1 g. KSCN in 10 ml. MeOH, refluxed 9 hrs. and the product concentrated gave 1.4 g. III.HSCN, m. 1079°. III (from 1.6 g. III.HCl) in 10 ml. C5H5N at 0° treated dropwise with 1.55 g. BzCl, stirred 1 hr. at room temperature, kept overnight, the solvent removed, and the residue washed with H2O gave 1.2 g. 4-pyridyldibenzoylhydrazine, m. 2345° (EtOH). III (from 1.45 g. III.HCl) in 10 ml. EtOH and 1 g. AcCH2COMe refluxed 1 hr., the EtOH removed, the residue in 5 ml. 10% NaOH and 10 ml. H2O extracted with CHCl3 and the product distilled gave 1.15 g. 1-(4-pyridyl)3,5-dimethylpyrazole, b5 131-4°; picrate m. 237° (decomposition). A solution of 1.26 g. AcONa.3H2O, 3 ml. H2O, 1 g. IV.HCl, 0.37 g. Me2CO and 1 ml. AcOH refluxed 1.5 hrs., cooled, 4 ml. H2O added and the mixture made alk. with NH4OH and kept overnight at 0° gave 0.62 g. acetone 4-quinolylhydrazone, m. 122°. IV (0.5 g.) in 5 ml. EtOH and 0.34 g. PhCHO refluxed 1 hr. and the product concentrated gave 0.46 g. benzaldehyde 4-quinolylhydrazone, m. 11314°. IV.HCl (0.9 g.) in 20 ml. H2O, 0.63 g. AcONa.3H2O and 0.4 g. pyruvic acid mixed well and the product filtered off gave 0.73 g. pyruvic acid 4-quinolylhydrazone, m. 246° (decomposition). IV (0.35 g.) in 4 ml. EtOH and 0.25 g. Et pyruvate refluxed 1 hr. and the solution concentrated gave 0.31 g. Et pyruvate 4-quinolylhydrazone, m. 178°. IV.HCl (1.4 g.), 0.7 g. KSCN, and 50 ml. MeOH refluxed 12 hrs. and the solution concentrated gave 1.2 g. IV.HSCN, m. 168-9°. IV (0.5 g.) in 5 ml. C5-H5N and 0.44 g. BzCl refluxed 3 hrs. and the product concentrated gave 0.37 g. 1-(4-quinolyl)-2-(benzoyl)hydrazine, m. 129.5-30.5°. IV (0.66 g.) in 5 ml. EtOH and 0.42 g. AcCH2COMe refluxed 1 hr., the EtOH removed and the residue in 10% NaOH extracted with CHCl3 gave 0.66 g. 1-(4quinolyl)-3,5-dimethylpyrrazole, b4 180-1°; picrate m. 198° (MeOH).

Yakugaku Zasshi published new progress about 18437-58-6. 18437-58-6 belongs to pyridine-derivatives, auxiliary class Pyridine,Amine, name is 4-Amino-2-picoline, and the molecular formula is C11H9ClN2O, Synthetic Route of 18437-58-6.

Referemce:
https://en.wikipedia.org/wiki/Pyridine,
Pyridine | C5H5N – PubChem

Surov, O. V.’s team published research in Physical Chemistry: An Indian Journal in 12 | CAS: 2215-33-0

Physical Chemistry: An Indian Journal published new progress about 2215-33-0. 2215-33-0 belongs to pyridine-derivatives, auxiliary class Pyridine,Amine, name is 2-((2-(Pyridin-2-yl)hydrazono)methyl)pyridine, and the molecular formula is C5H10Cl3O3P, Quality Control of 2215-33-0.

Surov, O. V. published the artcileEnthalpies of Fusion, sublimation and vaporization of some hydrazones, Quality Control of 2215-33-0, the publication is Physical Chemistry: An Indian Journal (2017), 12(1), 1-15, database is CAplus.

Enthalpies of melting, sublimation and vaporization were determined for some hydrazones. The validity of thermogravimetric procedure for measuring enthalpy of vaporization of the compounds under investigation was demonstrated. Exploring packing modes and intermol. interactions in mol. crystals of the hydrazones using Hirshfeld surfaces was carried out.

Physical Chemistry: An Indian Journal published new progress about 2215-33-0. 2215-33-0 belongs to pyridine-derivatives, auxiliary class Pyridine,Amine, name is 2-((2-(Pyridin-2-yl)hydrazono)methyl)pyridine, and the molecular formula is C5H10Cl3O3P, Quality Control of 2215-33-0.

Referemce:
https://en.wikipedia.org/wiki/Pyridine,
Pyridine | C5H5N – PubChem

Shibata, Katsumi’s team published research in Bitamin in 69 | CAS: 636-73-7

Bitamin published new progress about 636-73-7. 636-73-7 belongs to pyridine-derivatives, auxiliary class Pyridine,Sulfonic acid, name is Pyridine-3-sulfonic acid, and the molecular formula is C14H10O4S2, Application In Synthesis of 636-73-7.

Shibata, Katsumi published the artcileNiacin activity of 3-cyanopyridine, pyridine 3-sulfonic acid, nicotinic acid N-oxide, and 6-hydroxynicotinic acid in rats, Application In Synthesis of 636-73-7, the publication is Bitamin (1995), 69(7), 357-64, database is CAplus.

Niacin activity of the niacin related compounds such as 3-cyanopyridine, pyridine 3-sulfonic acid, nicotinic acid N-oxide, and 6-hydroxynicotinic acid was investigated using rats. 3-Cyanopyridine, pyridine-3-sulfonic acid, and 6-hydroxynicotinic acid had not only niacin activity but also the antagonistic activity. Nicotinic acid N-oxide had niacin activity and the relative niacin activity to nicotinic acid was about 1/2 in molar ratio.

Bitamin published new progress about 636-73-7. 636-73-7 belongs to pyridine-derivatives, auxiliary class Pyridine,Sulfonic acid, name is Pyridine-3-sulfonic acid, and the molecular formula is C14H10O4S2, Application In Synthesis of 636-73-7.

Referemce:
https://en.wikipedia.org/wiki/Pyridine,
Pyridine | C5H5N – PubChem