Adding a certain compound to certain chemical reactions, such as: 89364-04-5, 3-Bromo-4-nitropyridine, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, Computed Properties of C5H3BrN2O2, blongs to pyridine-derivatives compound. Computed Properties of C5H3BrN2O2
Step 5: 5-(2,3-difluoro-4-(4-nitropyridin-3-yl)phenyl)-2-((1-phenyl-2,5,8,11,14-pentaoxahexadecan-16-yl)oxy)pyridine To a solution of 5-(2,3-difluoro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl)-2-((1-phenyl-2,5,8,11,14-pentaoxahexadecan-16-yl) oxy) pyridine (350 mg, 0.544 mmol) in dioxane/H2O (11 mL, 10/1, v/v) was added 3-bromo-4-nitropyridine (121 mg, 0.6 mmol), Na2CO3 (120 mg, 1.1 mmol) and Pd(PPh3)4 (63 mg). The mixture was stirred at 110 C. for 1h under N2. After the reaction, the mixture was extracted with ethyl acetate (20 mL) and washed with brine (30 mL). The organic solution was dried over anhydrous sodium sulfate and concentrated. The crude was purified by column chromatography on silica gel with PE/EA (1:3) to give the desired product (170 mg) as a yellow oil.
At the same time, in my other blogs, there are other synthetic methods of this type of compound,89364-04-5, 3-Bromo-4-nitropyridine, and friends who are interested can also refer to it.
Reference:
Patent; Arvinas, Inc.; Crew, Andrew P.; Berlin, Michael; Flanagan, John J.; Dong, Hanqing; Ishchenko, Alexey; (559 pag.)US2018/125821; (2018); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem