Extracurricular laboratory: Synthetic route of 5,6-Dichloropicolinic acid

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,88912-24-7, its application will become more common.

Adding a certain compound to certain chemical reactions, such as: 88912-24-7, 5,6-Dichloropicolinic acid, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, 88912-24-7, blongs to pyridine-derivatives compound. Recommanded Product: 88912-24-7

Sodium hydride (CAN 7646-69-7, 60% w/w, 1.05 g, 26 mmol) was added tocyclopropylmethanol (CAN 2516-33-8, 7.5 g) at 0C and the mixture was stirred for 1 h. 5,6-Dichloro-pyridine-2-carboxylic acid (1 g, 5 mmol) was added and the mixture was heated to 95C for 3 h. The solvent was removed under reduced pressure. The residue was diluted with water (10 mL) and adjusted to pH = 3.0 by hydrochloric acid (3 N). The solution was extracted with ethyl acetate (3 x 15 mL). The combined organic layers were washed with water (3 x 30 mL) and brine (2 x 40 mL) and evaporated to dryness to give the crude product (0.35 g, 25%>), which was used in the next step without further purification, MS (EI): m/e = 228.1 [M+H]+.

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,88912-24-7, its application will become more common.

Reference:
Patent; F. HOFFMANN-LA ROCHE AG; BISSANTZ, Caterina; GRETHER, Uwe; HEBEISEN, Paul; KIMBARA, Atsushi; LIU, Qingping; NETTEKOVEN, Matthias; PRUNOTTO, Marco; ROEVER, Stephan; ROGERS-EVANS, Mark; SCHULZ-GASCH, Tanja; ULLMER, Christoph; WANG, Zhiwei; YANG, Wulun; WO2012/168350; (2012); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem