Adding a certain compound to certain chemical reactions, such as: 185017-72-5, 3-Bromo-2-chloro-6-picoline, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, 185017-72-5, blongs to pyridine-derivatives compound. Computed Properties of C6H5BrClN
a) l-(2-Chloro-6-methylpyridin-3-yl)cyclobutanol A suspension of molecular sieves (4 A) and 3-bromo-2-chloro-6-methylpyridine (CAN 185017-72-5, 5 g, 24.2 mmol) in THF (50 mL) was cooled to -15 C. 1.3 M isopropyl magnesium chloride lithium chloride complex solution in THF (19.6 mL, 25.4 mmol) was added within 30 min. Stirring was continued for 1 h at -15 C. Cyclobutanone (1.87 g, 2.00 mL, 26.6 mmol) was slowly added. Stirring was continued for 2 h at -15 C and for further 2 h at 0 C. Water (2.5 mL) was added, the mixture was concentrated in vacuo, and poured onto sat. aqueous NH4C1 solution. The mixture was extracted with EtOAc (2 x 100 mL). The combined extracts were washed with ice water (50 mL), dried over Na2S04 and concentrated in vacuo. The residue was purified by flash chromatography (silica gel, 140 g, heptane / EtOAc 0-40% in 120 min.) to give the title compound (3.33 g, 70%) as white solid, MS (ESI): m/e = 198.1 [MH+]
These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,185017-72-5, its application will become more common.
Reference:
Patent; F. HOFFMANN-LA ROCHE AG; HOFFMANN-LA ROCHE INC.; BENDELS, Stefanie; GRETHER, Uwe; KIMBARA, Atsushi; NETTEKOVEN, Matthias; ROEVER, Stephan; ROGERS-EVANS, Mark; SCHAFFTER, Ernst; SCHULZ-GASCH, Tanja; WO2014/86806; (2014); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem