These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,914942-88-4, its application will become more common.
Application of 914942-88-4, In the chemical reaction process,reaction time,type of solvent,can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.An updated downstream synthesis route of 914942-88-4 as follows.
To a mixture of A214.5 (1.00 g, 5.74 mmol), tert~Butyl6-arnino-7-iodo-l- methyl-lH-imidazo[4,5-c]pyridin-4-yl(methyl)carbamate (1.78 g, 4.42 mmol), dichlorobis(triphenyl-phosphine)palladium II (0.186 g, 0.265 mmol), and copper EPO iodide (0.042 g, 0.221 mmol) in anhydrous dimethylformamide (12 mL) degassed well with nitrogen was added diisopropylamine (15 mL, 0.111 mol). The reaction mixture was immersed in an oil bath at 750C and stirred for 45 min. The solvent was removed under reduced pressure, and the residue was purified by flash silica gel chromatography using a mixture of methanol in dichloromethane (5%-8%) to give 1.88 g (95%) of A214.6 as a tan solid. The compound had an HPLC retention time = 2.13 min. (Column: Chromolith SpeedROD 4.6 x 50 mm – 4 min.; Solvent A = 10% MeOH, 90% H2O, and 0.1% TFA; Solvent B = 90% MeOH, 10% H2O5 and 0.1% TFA) and a LC/MS M+1 = 450.35.
These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,914942-88-4, its application will become more common.
Reference:
Patent; BRISTOL-MYERS SQUIBB COMPANY; WO2006/122137; (2006); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem