Some scientific research about 5-Aminopyridine-2-carboxamide

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,145255-19-2, its application will become more common.

Synthetic Route of 145255-19-2, Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps,and cheap raw materials. 145255-19-2, name is 5-Aminopyridine-2-carboxamide. A new synthetic method of this compound is introduced below.

B) 5-((4-((3R)-3-cyano-3-ethyl-2-oxopyrrolidin-1-yl)pyrimidin-2-yl)amino)pyridine-2-carboxamide To a solution of (3R)-1-(2-chloropyrimidin-4-yl)-3-ethyl-2-oxopyrrolidine-3-carbonitrile (200 mg) obtained in Step A of Example 8, 5-aminopyridine-2-carboxamide (130 mg) obtained in Step A of Example 350, cesium carbonate (520 mg) and 2,2′-bis(diphenylphosphino)-1,1′-binaphthyl (75 mg) in tetrahydrofuran (5.0 mL) was added tris(dibenzylideneacetone)dipalladium(0) (73 mg), and the mixture was stirred overnight at 80C under argon atmosphere. The insoluble substance was removed by filtration through Celite, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography (NH, hexane/ethyl acetate), and recrystallized (diisopropyl ether/ethanol) to give the title compound (25 mg). MS (ESI+) : [M+H]+ 352.3.

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,145255-19-2, its application will become more common.

Reference:
Patent; Takeda Pharmaceutical Company Limited; TSUKAMOTO, Tetsuya; OHBA, Yusuke; YUKAWA, Takafumi; NAGAMIYA, Hiroyuki; KAMEI, Taku; TOKUNAGA, Norihito; SAITOH, Morihisa; OKABE, Atsutoshi; EP2832734; (2015); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem