Explore more uses of cas: 100-54-9 | Industrial & Engineering Chemistry Research

3-Cyanopyridine(cas: 100-54-9) is an antimicrobial agent that can be used in the treatment of infectious diseases.Recommanded Product: 3-Cyanopyridine It has been shown to be effective against a variety of bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae.

Recommanded Product: 3-CyanopyridineIn 2022, Zhu, Daoyun;Liu, Haiou;Huang, Yangqiang;Luo, Xiao;Mao, Yu;Liang, Zhiwu published 《Study of Direct Synthesis of DMC from CO2 and Methanol on CeO2: Theoretical Calculation and Experiment》. 《Industrial & Engineering Chemistry Research》published the findings. The article contains the following contents:

Rare earth metal oxides are known to have good catalytic effectiveness in the direct synthesis of di-Me carbonate (DMC) from CO2 and methanol. In this work, we screened ceria (CeO2) catalysts by analyzing their capacity for CO2 adsorption. The effects of the crystal surface morphol. and oxygen vacancy on the catalytic performance of the ceria catalyst were studied by using d. functional theory (DFT). The results show that the (110) surface and higher oxygen vacancy content can better promote the synthesis of DMC and that the rod-shaped CeO2 catalyst has a better catalytic effect. The oxygen vacancy content on the catalyst was improved by freeze-drying and confirmed by thermogravimetric anal., Raman spectroscopy, and ESR. The freeze-dried CeO2 (CeO2-FD) then showed a higher catalytic performance. The conversion rate of methanol and the yield of DMC were 33.95% and 584 mmol g-1cat, resp., under mild conditions (140°C and 1 MPa). The experimental procedure involved many compounds, such as 3-Cyanopyridine (cas: 100-54-9) .

3-Cyanopyridine(cas: 100-54-9) is an antimicrobial agent that can be used in the treatment of infectious diseases.Recommanded Product: 3-Cyanopyridine It has been shown to be effective against a variety of bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae.

Reference:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem