Delcamp, Jared H.’s team published research in Chemical Communications (Cambridge, United Kingdom) in 2012 | CAS: 29682-15-3

Methyl 5-bromopicolinate(cas: 29682-15-3) belongs to pyridine. Pyridine is very deactivated towards electrophilic substitution with respect to benzene. For this reason classical formylation, using methods such as the Gattermann or Vilsmeier reactions, are not generally successful. Category: pyridine-derivatives

In 2012,Delcamp, Jared H.; Yella, Aswani; Nazeeruddin, Mohammad K.; Graetzel, Michael published 《Modulating dye E(S+/S*) with efficient heterocyclic nitrogen containing acceptors for DSCs》.Chemical Communications (Cambridge, United Kingdom) published the findings.Category: pyridine-derivatives The information in the text is summarized as follows:

Acceptor motifs based on nitrogen containing heterocycles have been synthesized for use in dye-sensitized solar cells (DSCs). Through the selective addition of nitrogen atoms and increased conjugation of the nitrogen containing heterocycles the excited-state oxidation potential, E(S+/S*), may be conveniently tuned with minimal effect on the ground-state oxidation potential, E(S+/S), of the dye. The experimental process involved the reaction of Methyl 5-bromopicolinate(cas: 29682-15-3Category: pyridine-derivatives)

Methyl 5-bromopicolinate(cas: 29682-15-3) belongs to pyridine. Pyridine is very deactivated towards electrophilic substitution with respect to benzene. For this reason classical formylation, using methods such as the Gattermann or Vilsmeier reactions, are not generally successful. Category: pyridine-derivatives

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem