Honnanayakanavar, Jyoti M.; Nanubolu, Jagadeesh Babu; Suresh, Surisetti published an article in 2021. The article was titled 《Tandem copper catalyzed regioselective N-arylation-amidation: synthesis of angularly fused dihydroimidazoquinazolinones and the anticancer agent TIC10/ONC201》, and you may find the article in Organic & Biomolecular Chemistry.Name: 2-Bromonicotinaldehyde The information in the text is summarized as follows:
Herein, a copper-catalyzed tandem reaction of 2-aminoimidazolines I (R = n-Bu, Ph, furan-2-ylmethyl, pyridin-4-ylmethyl, etc.) and ortho-halo(hetero)aryl carboxylic acids R1C(O)OH (R1 = 2-bromophenyl, 2-bromo-4,5-difluorophenyl, 2-bromopyridin-3-yl, 4-chloropyridin-3-yl, etc.) that causes the regioselective formation of angularly fused tricyclic 1,2-dihydroimidazo[1,2-a]quinazolin-5(4H)-one derivs II (R2 = H, OMe, F; R3 = H, OMe, Cl, Br, F, NO2; R4 = H, F), III and IV was presented. The reaction involved in the construction of the core six-membered pyrimidone moiety proceeded via regioselective N-arylation-condensation. The presented protocol has been successfully applied to accomplish the total synthesis of TIC10/ONC201 V, which is an active angular isomer acting as a tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL): a sought after anticancer clin. agent. In addition to this study using 2-Bromonicotinaldehyde, there are many other studies that have used 2-Bromonicotinaldehyde(cas: 128071-75-0Name: 2-Bromonicotinaldehyde) was used in this study.
2-Bromonicotinaldehyde(cas: 128071-75-0) belongs to pyridine. Pyridine is very deactivated towards electrophilic substitution with respect to benzene. For this reason classical formylation, using methods such as the Gattermann or Vilsmeier reactions, are not generally successful. Name: 2-Bromonicotinaldehyde