Shoberu, Adedamola’s team published research in Organic Chemistry Frontiers in 2021 | CAS: 3510-66-5

2-Bromo-5-methylpyridine(cas: 3510-66-5) belongs to pyridine. Pyridine and pyridine-derived structures are privileged pharmacophores in medicinal chemistry and an essential functionality for organic chemists. As the prototypical π-deficient heterocycle, pyridine illustrates distinctive chemistry as both substrate and reagent. Computed Properties of C6H6BrN

Computed Properties of C6H6BrNIn 2021 ,《Copper-catalyzed, N-auxiliary group-controlled switchable transannulation/nitration initiated by nitro radicals: selective synthesis of pyridoquinazolones and 3-nitroindoles》 appeared in Organic Chemistry Frontiers. The author of the article were Shoberu, Adedamola; Li, Cheng-Kun; Qian, Hai-Feng; Zou, Jian-Ping. The article conveys some information:

Herein, a strategy based on the judicious choice of N-auxiliaries, which stabilize the substrates as well as allow precise and predictable control over their reactivity with tert-Bu nitrite was described. Thus, the stage was set for the copper-assisted, controllable synthesis of pyridoquinazolones or 3-nitroindoles. Mechanistic studies implicate a switch in the mechanism, in which N-2-pyridylindoles reacted via a nitrosation/transannulation process and N-2-pyridoylindoles underwent an amide bond dissociation/nitration sequence. Notably, the subsequent removal of the auxiliary groups was not required in these reactions. In the experimental materials used by the author, we found 2-Bromo-5-methylpyridine(cas: 3510-66-5Computed Properties of C6H6BrN)

2-Bromo-5-methylpyridine(cas: 3510-66-5) belongs to pyridine. Pyridine and pyridine-derived structures are privileged pharmacophores in medicinal chemistry and an essential functionality for organic chemists. As the prototypical π-deficient heterocycle, pyridine illustrates distinctive chemistry as both substrate and reagent. Computed Properties of C6H6BrN

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem