Sun, Yuanyuan’s team published research in Journal of Molecular Modeling in 2020 | CAS: 100-48-1

4-Cyanopyridine(cas: 100-48-1) belongs to pyridine. The basicity and metallophilic high donor number of these π-deficient systems has long favored them as ligands in metal catalysis. The last decade saw pyridine assume a stronger role as functional group for directed C–H oxidation/activation.Application of 100-48-1

Application of 100-48-1In 2020 ,《Halogen bonding interactions in the XC5H4N···YCF3 (X = CH3, H, Cl, CN, NO2; Y = Cl, Br, I) complexes》 appeared in Journal of Molecular Modeling. The author of the article were Sun, Yuanyuan; Shi, Bo; Zhang, Xueying; Zeng, Yanli. The article conveys some information:

The noncovalent interactions between the σ-hole region outside the halogen atom and the nitrogen atom of pyridine and its para-substituted derivatives are the focus of this work. Based on the analyses of the electrostatic potentials, YCF3 (Y = Cl, Br, I) act as halogen bond donors, XC5H4N (X = CH3, H, Cl, CN, NO2) act as halogen bond acceptors, and the binary halogen-bonded complexes XC5H4N···YCF3 have been designed and investigated by B3LYP-D3/aug-cc-pVDZ calculations together with the aug-cc-pVDZ-PP basis set for iodine. When the halogen bond acceptor remains unchanged, the interactions between C5H5N and YCF3 (Y = Cl, Br, I) increase with the order of Y = Cl, Br, and I. When the halogen donor ICF3 is fixed, the halogen bonding interactions decrease along the sequence of X = CH3, H, Cl, CN, NO2. Therefore, the halogen bond of the CH3C5H4N···ICF3 complex is the strongest. The interactions between Lewis acid YCF3 (Y = Cl, Br, I) and pyridine and para-substituted pyridine are closed-shell and noncovalent interactions. On the one hand, when the halogen bond acceptor XC5H4N is fixed, with the increase of halogen at. number, the strength of halogen bond increases; on the other hand, when the halogen bond donor ICF3 is fixed, as the electron-withdrawing ability of the electron-withdrawing group (X) increases, the halogen bond gradually weakens.4-Cyanopyridine(cas: 100-48-1Application of 100-48-1) was used in this study.

4-Cyanopyridine(cas: 100-48-1) belongs to pyridine. The basicity and metallophilic high donor number of these π-deficient systems has long favored them as ligands in metal catalysis. The last decade saw pyridine assume a stronger role as functional group for directed C–H oxidation/activation.Application of 100-48-1

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem