In 2017,Pang, Lijuan; Bezencon, Jacqueline; Kleeb, Simon; Rabbani, Said; Sigl, Anja; Smiesko, Martin; Sager, Christoph P.; Eris, Deniz; Schwardt, Oliver; Ernst, Beat published 《FimH antagonists – solubility vs. permeability》.Carbohydrate Chemistry published the findings.HPLC of Formula: 29682-15-3 The information in the text is summarized as follows:
Urinary tract infections (UTIs) caused by uropathogenic Escherichia coli (UPEC) are among the most prevalent infections worldwide. Since frequent antibiotic treatment favors the emergence of antibiotic resistance, efficient non-antibiotic strategies are urgently needed. The first step of the pathogenesis of UTI is the bacterial adherence to urothelial host cells, a process mediated by the mannose-binding adhesin FimH located at the tip of bacterial pili. In a preliminary study, biphenyl α-D-mannopyranosides with an electron-withdrawing carboxylate on the aglycon were identified as potent FimH antagonists. Although passive permeability could be established by masking the carboxylate as an ester, insufficient solubility and fast hydrolysis did not allow to maintain the therapeutic concentration in the bladder for the requested period of time. By modifying the substitution pattern, mol. planarity and symmetry of the biphenyl aglycon could be disrupted leading to improved solubility In addition, when heteroatoms were introduced to the aglycon, antagonists with further improved solubility, metabolic stability as well as passive permeability were obtained. The best representative, the pyrrolylphenyl mannoside 42f exhibited therapeutic urine concentration for up to 6 h and is therefore a promising oral candidate for UTI prevention and/or treatment. In the experiment, the researchers used Methyl 5-bromopicolinate(cas: 29682-15-3HPLC of Formula: 29682-15-3)
Methyl 5-bromopicolinate(cas: 29682-15-3) belongs to pyridine. Pyridine is very deactivated towards electrophilic substitution with respect to benzene. For this reason classical formylation, using methods such as the Gattermann or Vilsmeier reactions, are not generally successful. HPLC of Formula: 29682-15-3