Biallas, Phillip’s team published research in Organic Letters in 2022 | CAS: 3510-66-5

2-Bromo-5-methylpyridine(cas: 3510-66-5) belongs to pyridine. Pyridine is very deactivated towards electrophilic substitution with respect to benzene. For this reason classical formylation, using methods such as the Gattermann or Vilsmeier reactions, are not generally successful. Recommanded Product: 3510-66-5

In 2022,Biallas, Phillip; Yamazaki, Ken; Dixon, Darren J. published an article in Organic Letters. The title of the article was 《Difluoroalkylation of Tertiary Amides and Lactams by an Iridium-Catalyzed Reductive Reformatsky Reaction》.Recommanded Product: 3510-66-5 The author mentioned the following in the article:

An iridium catalyzed, reductive alkylation of abundant tertiary lactams and amides using 1-2 mol % of Vaska’s complex (IrCl(CO)(PPh3)2), tetramethyldisiloxane (TMDS) and difluoro-Reformatsky reagents (BrZnCF2R) for the general synthesis of medicinally relevant α-difluoroalkylated tertiary amines, is described. A broad scope (42 examples), including N-aryl and N-heteroaryl substituted lactams, demonstrated an excellent functional group tolerance. Furthermore, late-stage drug functionalizations, a gram scale synthesis and common downstream transformations proved the potential synthetic relevance of this new methodol. In the experiment, the researchers used 2-Bromo-5-methylpyridine(cas: 3510-66-5Recommanded Product: 3510-66-5)

2-Bromo-5-methylpyridine(cas: 3510-66-5) belongs to pyridine. Pyridine is very deactivated towards electrophilic substitution with respect to benzene. For this reason classical formylation, using methods such as the Gattermann or Vilsmeier reactions, are not generally successful. Recommanded Product: 3510-66-5

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem