《Substituent Effects of 2-Pyridones on Selective O-Arylation with Diaryliodonium Salts: Synthesis of 2-Aryloxypyridines under Transition-Metal-Free Conditions》 was written by Li, Xiao-Hua; Ye, Ai-Hui; Liang, Cui; Mo, Dong-Liang. Application In Synthesis of Methyl 6-oxo-1-phenyl-1,6-dihydropyridine-3-carboxylate And the article was included in Synthesis on April 30 ,2018. The article conveys some information:
An efficient transition-metal-free strategy to synthesize 2-aryloxypyridine derivatives was developed by a selective O-arylation of 2-pyridones with diaryliodonium salts. The reaction was compatible with a series of functional groups for 2-pyridones and diaryliodonium salts such as halides, nitro, cyano and ester groups. The substituents at the C6-position of 2-pyridones favored O-arylation products because of steric hindrance. The reaction was easily performed on a gram-scale and 6-chloro-2-pyridone was a good precursor to access various unsubstituted 2-aryloxypyridines by dehalogenation. A P2Y1 lead compound analog I could be prepared in good yield over two steps. The experimental part of the paper was very detailed, including the reaction process of Methyl 6-oxo-1-phenyl-1,6-dihydropyridine-3-carboxylate(cas: 77837-09-3Application In Synthesis of Methyl 6-oxo-1-phenyl-1,6-dihydropyridine-3-carboxylate)
Methyl 6-oxo-1-phenyl-1,6-dihydropyridine-3-carboxylate(cas: 77837-09-3) belongs to pyridine derivatives. The ring atoms in the pyridine molecule are sp2-hybridized. The nitrogen is involved in the π-bonding aromatic system using its unhybridized p orbital. Application In Synthesis of Methyl 6-oxo-1-phenyl-1,6-dihydropyridine-3-carboxylateThe lone pair is in an sp2 orbital, projecting outward from the ring in the same plane as the σ bonds.