In 2022,He, Tao; Kong, Xiang-Jing; Bian, Zhen-Xing; Zhang, Yong-Zheng; Si, Guang-Rui; Xie, Lin-Hua; Wu, Xue-Qian; Huang, Hongliang; Chang, Ze; Bu, Xian-He; Zaworotko, Michael J.; Nie, Zuo-Ren; Li, Jian-Rong published an article in Nature Materials. The title of the article was 《Trace removal of benzene vapour using double-walled metal-dipyrazolate frameworks》.Product Details of 624-28-2 The author mentioned the following in the article:
In principle, porous physisorbents are attractive candidates for the removal of volatile organic compounds such as benzene by virtue of their low energy for the capture and release of this pollutant. Unfortunately, many physisorbents exhibit weak sorbate-sorbent interactions, resulting in poor selectivity and low uptake when volatile organic compounds are present at trace concentrations Herein, we report that a family of double-walled metal-dipyrazolate frameworks, BUT-53 to BUT-58, exhibit benzene uptakes at 298 K of 2.47-3.28 mmol g-1 at <10 Pa. Breakthrough experiments revealed that BUT-55, a supramol. isomer of the metal-organic framework Co(BDP) (H2BDP = 1,4-di(1H-pyrazol-4-yl)benzene), captures trace levels of benzene, producing an air stream with benzene content below acceptable limits. Furthermore, BUT-55 can be regenerated with mild heating. Insight into the performance of BUT-55 comes from the crystal structure of the benzene-loaded phase (C6H6@BUT-55) and d. functional theory calculations, which reveal that C-H···X interactions drive the tight binding of benzene. Our results demonstrate that BUT-55 is a recyclable physisorbent that exhibits high affinity and adsorption capacity towards benzene, making it a candidate for environmental remediation of benzene-contaminated gas mixtures In the experiment, the researchers used 2,5-Dibromopyridine(cas: 624-28-2Product Details of 624-28-2)
2,5-Dibromopyridine(cas: 624-28-2) belongs to pyridine. Pyridine is a relatively complex molecule and exhibits a number of different bands in IR spectra. Among others, the bands characterizing the ν8a and ν19b modes have been found to be sensitive to the coordination or protonation of the molecule. Note that the band that is diagnostic for the PyH+ ion at about 1545 cm− 1 (ν19b mode) does not overlap with any of the other bands.Product Details of 624-28-2