Comprehensive 16S rDNA Sequencing and LC-MS/MS-Based Metabolomics to Investigate Intestinal Flora and Metabolic Profiles of the Serum, Hypothalamus and Hippocampus in p-Chlorophenylalanine-Induced Insomnia Rats Treated with Lilium brownie was written by Si, Yanpo;Chen, Xiaohui;Guo, Tao;Wei, Wenjun;Wang, Lili;Zhang, Fei;Sun, Xiaoya;Liu, Mengqi. And the article was included in Neurochemical Research in 2022.Recommanded Product: 54-47-7 The following contents are mentioned in the article:
Gut microbiota homeostasis in the organism and insomnia have been reported to influence each other. In the study, a method of 16S rRNA gene sequencing combined with ultra-high performance liquid chromatog.-mass/mass spectrometry was adopted to evaluate the effects of Lilium brownie (LB) on intestinal flora and metabolic profiles of serum, hypothalamus and hippocampus in insomnia rat induced by p-chlorophenylalanine (PCPA). It was observed that the imbalance in the diversity and abundance of gut microbiota induced by PCPA was restored after LB intervention. Among these, the Porphyromonadaceae, Lactobacillus and Escherichia were significantly adjusted at the genus level by PCPA and LB, resp. It was also found that the most of metabolic phenotypes in serum, hypothalamus and hippocampus perturbed by PCPA were regulated towards normal after LB intervention, especially 5-hydroxy-L-tryptophan of the hypothalamus involving in 5-HT metabolism Moreover, the arachidonic acid metabolism in serum, hypothalamus and hippocampus, and the serotonergic synapse in hypothalamus and hippocampus were the most fundamentally and significantly affected pathways after LB intervention. The results of correlation anal. showed that several floras including Pseudoruegeria have an outstanding contribution to the change of differential metabolites. In brief, the results confirm that gut microbiota is significantly returned to normal and may interact with the corresponding metabolites to relieve insomnia under LB intervention. This study involved multiple reactions and reactants, such as (4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7Recommanded Product: 54-47-7).
(4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7) belongs to pyridine derivatives. Pyridine has a dipole moment and a weaker resonant stabilization than benzene (resonance energy 117 kJ·mol−1 in pyridine vs. 150 kJ·mol−1 in benzene). Pyridine groups exist in countless molecules, and their applications include catalysis, drug design, molecular recognition, and natural product synthesis.Recommanded Product: 54-47-7