Zhan, Yi-Zhou et al. published their research in Nature Communications in 2021 | CAS: 700-16-3

2,3,4,5,6-Perfluoropyridine (cas: 700-16-3) belongs to pyridine derivatives. Pyridines are an important class of heterocycles and occur in polysubstituted forms in many naturally occurring biologically active compounds, drug molecules and chiral ligands. Pyridine groups exist in countless molecules, and their applications include catalysis, drug design, molecular recognition, and natural product synthesis.Reference of 700-16-3

Ni-catalyzed regio- and stereo-defined intermolecular cross-electrophile dialkylation of alkynes without directing group was written by Zhan, Yi-Zhou;Xiao, Nan;Shu, Wei. And the article was included in Nature Communications in 2021.Reference of 700-16-3 The following contents are mentioned in the article:

The nickel-catalyzed intermol. cross-dialkylation of alkynes devoid of directing or activating groups afforded multiple aliphatic substituted alkenes in a syn-selective fashion at room temp was reported. The combination of two-electron oxidative cyclometallation and single-electron cross-electrophile coupling of nickel enabled the syn-cross-dialkylation of alkynes at room temperature This reductive protocol enabled the sequential installation of two different alkyl substituents onto alkynes in a regio- and stereo-selective manner, circumvented the tedious preformation of sensitive organometallic reagents. The synthetic utility of this protocol was demonstrated by efficient synthesis of multi-substituted unfunctionalized alkenes and diverse transformations of the product. This study involved multiple reactions and reactants, such as 2,3,4,5,6-Perfluoropyridine (cas: 700-16-3Reference of 700-16-3).

2,3,4,5,6-Perfluoropyridine (cas: 700-16-3) belongs to pyridine derivatives. Pyridines are an important class of heterocycles and occur in polysubstituted forms in many naturally occurring biologically active compounds, drug molecules and chiral ligands. Pyridine groups exist in countless molecules, and their applications include catalysis, drug design, molecular recognition, and natural product synthesis.Reference of 700-16-3

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem