Vaibavi, S. R.’s team published research in Cell Biochemistry and Biophysics in 80 | CAS: 21829-25-4

Cell Biochemistry and Biophysics published new progress about 21829-25-4. 21829-25-4 belongs to pyridine-derivatives, auxiliary class Membrane Transporter/Ion Channel,Calcium Channel, name is Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, and the molecular formula is C5H7BO2S, Computed Properties of 21829-25-4.

Vaibavi, S. R. published the artcileCalcium-channel-blockers exhibit divergent regulation of cancer extravasation through the mechanical properties of cancer cells and underlying vascular endothelial cells, Computed Properties of 21829-25-4, the publication is Cell Biochemistry and Biophysics (2022), 80(1), 171-190, database is CAplus and MEDLINE.

Cardiovascular and cancer illnesses often co-exist, share pathol. pathways, and complicate therapy. In the context of the potential oncol. role of cardiovascular-antihypertensive drugs (AHD), here we examine the role of calcium-channel blocking drugs on mechanics of extravasating cancer cells, choosing two clin.-approved calcium-channel blockers (CCB): Verapamil-hydrochloride and Nifedipine, as model AHD to simultaneously target cancer cells (MCF7 and or MDA231) and an underlying monolayer of endothelial cells (HUVEC). First, live-cell microscopy shows that exposure to Nifedipine increases the spreading-area, migration-distance, and frequency of transmigration of MCF-7 cells through the HUVEC monolayer, whereas Verapamil has the opposite effect. Next, impedance-spectroscopy shows that for monolayers of either endothelial or cancer cells, Nifedipine-treatment alone decreases the impedance of both cases, suggesting compromised cell-cell integrity. Furthermore, upon co-culturing MCF-7 on the HUVEC monolayers, Nifedipine-treated MCF-7 cells exhibit weaker impedance than Verapamil-treated MCF-7 cells. Following, fluorescent staining of CCB-treated cytoskeleton, focal adhesions, and cell-cell junction also indicated that Nifedipine treatment diminished the cell-cell integrity, whereas verapamil treatment preserved the integrity. Since CCBs regulate intracellular Ca2+, we next investigated if cancer cell′s exposure to CCBs regulates calcium-dependent processes critical to extravasation, specifically traction and mechanics of plasma membrane. Towards this end, first, we quantified the 2D-cellular traction of cells in response to CCBs. Results show that exposure to F-actin depolymerizing drug decreases traction stress significantly only for Nifedipine-treated cells, suggesting an actin-independent mechanism of Verapamil activity. Next, using an optical tweezer to quantify the mechanics of plasma membrane (PM), we observe that under constant, externally-applied tensile strain, PM of Nifedipine-treated cells exhibits smaller relaxation-time than Verapamil and untreated cells. Finally, actin depolymerization significantly decreases MSD only for Verapamil treated cancer-cells and endothelial cells and not for Nifedipine-treated cells. Together, our results show that CCBs can have varied, mechanics-regulating effects on cancer-cell transmigration across endothelial monolayers. A judicious choice of CCBs is critical to minimizing the pro-metastatic effects of antihypertension therapy.

Cell Biochemistry and Biophysics published new progress about 21829-25-4. 21829-25-4 belongs to pyridine-derivatives, auxiliary class Membrane Transporter/Ion Channel,Calcium Channel, name is Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, and the molecular formula is C5H7BO2S, Computed Properties of 21829-25-4.

Referemce:
https://en.wikipedia.org/wiki/Pyridine,
Pyridine | C5H5N – PubChem