Yang, Limin published the artcileLow-frequency vibrational modes of DL-homocysteic acid and related compounds, Synthetic Route of 636-73-7, the publication is Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (2009), 73A(5), 884-891, database is CAplus and MEDLINE.
Several polycrystalline mols. with sulfonate groups and some of their metal complexes, including DL-homocysteic acid (DLH) and its Sr- and Cu-complexes, pyridine-3-sulfonic acid and its Co- and Ni-complexes, sulfanilic acid and -cysteic acid were studied using THz time-domain methods at room temperature The results of THz absorption spectra show that the mols. have characteristic bands at 0.2-2.7 THz (6-90 cm-1). THz technique can be used to distinguish different mols. with sulfonate groups and to determine the bonding of metal ions and the changes of H bond networks. In the THz region DLH has three bands: 1.61, 1.93 and 2.02 THz; and 0.85, 1.23 and 1.73 THz for Sr-DLH complex, 1.94 THz for Cu-DLH complex, resp. The absorption bands of pyridine-3-sulfonic acid are located at 0.81, 1.66 and 2.34 THz; the bands at 0.96, 1.70 and 2.38 THz for its Co-complex, 0.76, 1.26 and 1.87 THz for its Ni-complex. Sulfanilic acid has three bands: 0.97, 1.46 and 2.05 THz; and the absorption bands of -cysteic acid are at 0.82, 1.62, 1.87 and 2.07 THz, resp. The THz absorption spectra after complexation are different from the ligands, which indicate the bonding of metal ions and the changes of H bond networks. M-O and other vibrations appear in the FIR region for those metal-ligand complexes. The bands in the THz region were assigned to the rocking, torsion, rotation, wagging and other modes of different groups in the mols. Preliminary assignments of the bands were carried out using Gaussian program calculation
Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy published new progress about 636-73-7. 636-73-7 belongs to pyridine-derivatives, auxiliary class Pyridine,Sulfonic acid, name is Pyridine-3-sulfonic acid, and the molecular formula is C11H21BF4N2O2, Synthetic Route of 636-73-7.
Referemce:
https://en.wikipedia.org/wiki/Pyridine,
Pyridine | C5H5N – PubChem