Castro-Godoy, Willber D. et al. published their research in European Journal of Organic Chemistry in 2019 | CAS: 626-64-2

Pyridin-4-ol (cas: 626-64-2) belongs to pyridine derivatives. Pyridine has a dipole moment and a weaker resonant stabilization than benzene (resonance energy 117 kJ·mol−1 in pyridine vs. 150 kJ·mol−1 in benzene). Many analogues of pyridine are known where N is replaced by other heteroatoms . Substitution of one C–H in pyridine with a second N gives rise to the diazine heterocycles (C4H4N2), with the names pyridazine, pyrimidine, and pyrazine.Name: Pyridin-4-ol

A Green Alternative for the Conversion of Arylboronic Acids/Esters into Phenols Promoted by a Reducing Agent, Sodium Sulfite was written by Castro-Godoy, Willber D.;Schmidt, Luciana C.;Argueello, Juan E.. And the article was included in European Journal of Organic Chemistry in 2019.Name: Pyridin-4-ol This article mentions the following:

Hydroxylation of arylboronic acids and arylboronic esters using sodium sulfite and oxygen as the source of ultimate oxidant proceeds rapidly in water under transition metal-free conditions. This remarkable mild and environmentally benign protocol represents a green alternative to synthesize phenols using inexpensive starting materials in a simple methodol. This new application for sodium sulfite shows a wide tolerance of functional groups, and it is compatible with oxidizable functionalities. In the experiment, the researchers used many compounds, for example, Pyridin-4-ol (cas: 626-64-2Name: Pyridin-4-ol).

Pyridin-4-ol (cas: 626-64-2) belongs to pyridine derivatives. Pyridine has a dipole moment and a weaker resonant stabilization than benzene (resonance energy 117 kJ·mol−1 in pyridine vs. 150 kJ·mol−1 in benzene). Many analogues of pyridine are known where N is replaced by other heteroatoms . Substitution of one C–H in pyridine with a second N gives rise to the diazine heterocycles (C4H4N2), with the names pyridazine, pyrimidine, and pyrazine.Name: Pyridin-4-ol

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem