Lishchynskyi, Anton et al. published their research in Journal of Organic Chemistry in 2013 | CAS: 116308-35-1

2-(Trifluoromethyl)nicotinaldehyde (cas: 116308-35-1) belongs to pyridine derivatives. Pyridine has a conjugated system of six π electrons that are delocalized over the ring. The molecule is planar and, thus, follows the Hückel criteria for aromatic systems. One of the examples of pyridines is the well-known alkaloid lithoprimidine, which is an A3 adenosine receptor antagonist and N,N-dimethylaminopyridine (DMAP) analog, commonly used in organic synthesis.Related Products of 116308-35-1

Trifluoromethylation of Aryl and Heteroaryl Halides with Fluoroform-Derived CuCF3: Scope, Limitations, and Mechanistic Features was written by Lishchynskyi, Anton;Novikov, Maxim A.;Martin, Eddy;Escudero-Adan, Eduardo C.;Novak, Petr;Grushin, Vladimir V.. And the article was included in Journal of Organic Chemistry in 2013.Related Products of 116308-35-1 This article mentions the following:

Fluoroform-derived CuCF3 recently discovered in our group exhibits remarkably high reactivity toward aryl and heteroaryl halides, performing best in the absence of extra ligands. A broad variety of iodoarenes undergo smooth trifluoromethylation with the “ligandless” CuCF3 at 23-50 °C to give the corresponding benzotrifluorides in nearly quant. yield. A number of much less reactive aromatic bromides also have been trifluoromethylated, including pyridine, pyrimidine, pyrazine, and thiazole derivatives as well as aryl bromides bearing electron-withdrawing groups and/or ortho substituents. Only the most electrophilic chloroarenes can be trifluoromethylated, e.g., 2-chloronicotinic acid. Exceptionally high chemoselectivity of the reactions (no side-formation of arenes, biaryls, and C2F5 derivatives) has allowed for the isolation of a large number of trifluoromethylated products in high yield on a gram scale (up to 20 mmol). The CuCF3 reagent is destabilized by CuX coproduced in the reaction, the magnitude of the effect paralleling the Lewis acidity of CuX: CuCl > CuBr > CuI. While SNAr and SRN1 mechanisms are not operational, there is a well-pronounced ortho effect, i.e., the enhanced reactivity of ortho-substituted aryl halides 2-RC6H4X toward CuCF3. Intriguingly, this ortho-effect is observed for R = NO2, COOH, CHO, COOEt, COCH3, OCH3, and even CH3, but not for R = CN. The fluoroform-derived CuCF3 reagent and its reactions with haloarenes provide an unmatched combination of reactivity, selectivity, and low cost. In the experiment, the researchers used many compounds, for example, 2-(Trifluoromethyl)nicotinaldehyde (cas: 116308-35-1Related Products of 116308-35-1).

2-(Trifluoromethyl)nicotinaldehyde (cas: 116308-35-1) belongs to pyridine derivatives. Pyridine has a conjugated system of six π electrons that are delocalized over the ring. The molecule is planar and, thus, follows the Hückel criteria for aromatic systems. One of the examples of pyridines is the well-known alkaloid lithoprimidine, which is an A3 adenosine receptor antagonist and N,N-dimethylaminopyridine (DMAP) analog, commonly used in organic synthesis.Related Products of 116308-35-1

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem