Supercritical water as a reaction medium for nitrogen-containing heterocycles was written by Wahyudiono;Matsunaga, Yui;Machmudah, Siti;Sasaki, Mitsuru;Goto, Motonobu. And the article was included in Journal of Chemistry and Chemical Engineering in 2012.Synthetic Route of C8H11N This article mentions the following:
Supercritical water has been focused on as an environmentally attractive reaction media, in which organic materials can be decomposed into smaller mols. The reaction behavior of pyrrole as a simple model compound of nonbasic nitrogen compounds found in petroleum residua was studied in supercritical water with a batch type reactor. The reaction was carried out at temperatures of 698-748 K and at various pressures under an argon atm. The chem. species in the aqueous products were identified by GCMS (gas chromatog. mass spectrometry) and quantified using GC-FID (gas chromatog. flame ionization detector). The effect of temperature and reaction time on the conversion process of pyrrole is presented. Under supercritical water conditions, pyrrole underwent successful decomposition in water into its derived compounds The conversion of pyrrole could approach 81.12 wt% at 723 K and 40 MPa within 240 min of reaction time. The decomposition process was accelerated with the existence of water at the same temperature Ultimate anal. of solid products was also conducted using a CHN analyzer. The process investigated in this study may form the basis for an efficient method of nitrogen compound decomposition in future. In the experiment, the researchers used many compounds, for example, 2-Isopropylpyridine (cas: 644-98-4Synthetic Route of C8H11N).
2-Isopropylpyridine (cas: 644-98-4) belongs to pyridine derivatives. Pyridine has a dipole moment and a weaker resonant stabilization than benzene (resonance energy 117 kJ璺痬ol閳? in pyridine vs. 150 kJ璺痬ol閳? in benzene). Several pyridine derivatives play important roles in biological systems. While its biosynthesis is not fully understood, nicotinic acid (vitamin B3) occurs in some bacteria, fungi, and mammals.Synthetic Route of C8H11N