Adding a certain compound to certain chemical reactions, such as: 67346-74-1, 3-Ethynylpyridin-2-amine, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, category: pyridine-derivatives, blongs to pyridine-derivatives compound. category: pyridine-derivatives
Reference Example 67 3-(3-(4-Butoxy-benzyl)-isoxazol-5-yl)-pyridin-2-ylamine; To a tetrahydrofuran (3 mL) solution of (4-butoxy-phenyl)-acetohydroximoyl chloride (150 mg, 0.619 mmol) described in Manufacturing Example 67-1-4 and 3-ethynyl-pyridin-2-ylamine (47 mg, 0.395 mmol) described in Manufacturing Example 1-2-3 was added triethylamine (216 muL, 1.55 mmol) at room temperature, which was stirred for 2 hours at 50° C. Water was added to the reaction solution at room temperature, which was then extracted with ethyl acetate. The organic layer was washed with water and saturated aqueous sodium chloride, and dried over anhydrous magnesium sulfate. The solvent was evaporated under a reduced pressure. The residue was purified by NH silica gel column chromatography (heptane:ethyl acetate=4:1-2:1) to obtain the title compound (27 mg, 14percent).1H-NMR Spectrum (CDCl3) delta (ppm): 0.95-0.99 (3H, m), 1.44-1.53 (2H, m), 1.72-1.79 (2H, m), 3.93-3.96 (2H, m), 4.00 (2H, s), 5.65 (2H, brs), 6.25 (1H, s),6.71-6.74 (1H, m), 6.86-6.88 (2H, m), 7.17-7.20 (2H, m), 7.72-7.75 (1H, m), 8.10-8.12(1H, m).
The synthetic route of 67346-74-1 has been constantly updated, and we look forward to future research findings.
Reference:
Patent; Tanaka, Keigo; Yamamoto, Eiichi; Watanabe, Naoaki; US2009/82403; (2009); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem