128071-75-0, As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 128071-75-0, name is 2-Bromonicotinaldehyde, molecular formula is C6H4BrNO, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.
2-Bromo-3-vinylpyridine. See Spivey, A. C.; Shukla, L.; Hayler, J. F. Org. Lett. 2007, 9, 891-894. Butyllithium (22.75 mL, 59.1 mmol) was added to the THF (450 mL) suspension of methyltriphenylphosphonium bromide (21.13 g, 59.1 mmol) at 0 C. The solution turned to orange and the reaction was lift to room temperature for 30 min before cooled it back to 0 C. 2-bromonicotinaldehyde (10 g, 53.8 mmol) in 50 mL THF was added through canula to the reaction solution. The precipitate was formed and the reaction was lift to room temperature. The color of the reaction turned to green, gray. After a while, the color of the reaction became orange again. The reaction was stirred at room temperature over weekend. The solvent was removed mostly via vacuum and the crude was partitioned between water and diethyl ether. The organic layer was separated and the aqueous layer was extract twice with diethyl ether. The diethyl ether layer was combined, dried (Na2SO4), filtered and concentrated. The product was obtained by flash column eluted with ethyl acetate in hexane (10%) as yellow oil (8.78 g, 89%). MS(ESI)[M+H+]=184.04; 1H NMR delta ppm (400 MHz, CHLOROFORM-d) 8.21-8.29 (m, 1H) 7.78 (dd, J=7.68, 1.89 Hz, 1H) 7.20-7.28 (m, 1H) 6.96 (dd, J=17.37, 11.08 Hz, 1H) 5.72 (d, J=17.37 Hz, 1H) 5.46 (d, J=11.08 Hz, 1H).
The chemical industry reduces the impact on the environment during synthesis 128071-75-0, I believe this compound will play a more active role in future production and life.
Reference:
Patent; Bristol-Myers Squibb Company; US2009/258866; (2009); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem