A new synthetic route of 5-Chloro-2-hydroxy-3-nitropyridine

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,21427-61-2, its application will become more common.

Adding a certain compound to certain chemical reactions, such as: 21427-61-2, 5-Chloro-2-hydroxy-3-nitropyridine, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, 21427-61-2, blongs to pyridine-derivatives compound. Quality Control of 5-Chloro-2-hydroxy-3-nitropyridine

a) 3-amino-5-chloropyridin-2-ol A mixture of 5-chloro-3-nitropyridin-2-ol (30.0 g), iron (14.5 g), ammonium chloride (46.5 g) and ethanol/water (300 mL, 3/1, v/v) was stirred at 90 C. for 2 hr. The reaction mixture was filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether) to give the title compound (20.0 g). MS: [M+H]+ 145.3.

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,21427-61-2, its application will become more common.

Reference:
Patent; Takeda Pharmaceutical Company Limited; FUJIMOTO, Jun; LIU, Xin; KURASAWA, Osamu; TAKAGI, Terufumi; CARY, Douglas Robert; BANNO, Hiroshi; ASANO, Yasutomi; KOJIMA, Takuto; (159 pag.)US2019/169166; (2019); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem