Analyzing the synthesis route of 2-Bromo-4-methyl-5-nitropyridine

According to the analysis of related databases, 23056-47-5, the application of this compound in the production field has become more and more popular.

Reference of 23056-47-5, The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 23056-47-5, name is 2-Bromo-4-methyl-5-nitropyridine. This compound has unique chemical properties. The synthetic route is as follows.

A suspension of 2-bromo-4-methyl-5-nitropyridine (XIV) (200 g, 921 mmol, 1.00 eq) and NH4C1 (240 g, 4.49 mol, 4.87 eq) in EtOH (3.50 L) and water (150 mL) was heated with stirring to 50C. To this mixture was added Fe (120 g, 2.15 mol, 2.33 eq) and HC1 (10.2 g, 279 mmol, 0.30 eq). The suspension was then heated to 80C for another 3 h. The reaction was cooled to 25C and filtered through a plug of Celite. The filtrate was concentrated under reduced pressure to yield a residue that was taken up in EtOAc (1 Lx 3) and washed with brine. The organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure to give 6- bromo-4-methylpyridin-3-amine (XV) as brown solid (167.9 g, 898 mmol, 97.4% yield) which was used for the next step without any purification. ?H NMR (CDC13, 400 MHz) ppm 2.15 (s, 3H), 3.44 (br s, 2H), 7.14 (s, 1H), 7.78 (s, 1H); ESIMS found for C6H7BrN2 mlz 186.8 (M+H).

According to the analysis of related databases, 23056-47-5, the application of this compound in the production field has become more and more popular.

Reference:
Patent; SAMUMED, LLC.; KC, Sunil Kumar; WALLACE, David Mark; CAO, Jianguo; CHIRUTA, Chandramouli; HOOD, John; (240 pag.)WO2017/23975; (2017); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem