Analyzing the synthesis route of 3-Bromo-2-methoxy-4-methylpyridine

According to the analysis of related databases, 717843-51-1, the application of this compound in the production field has become more and more popular.

Application of 717843-51-1, Adding some certain compound to certain chemical reactions, such as: 717843-51-1, name is 3-Bromo-2-methoxy-4-methylpyridine,molecular formula is C7H8BrNO, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 717843-51-1.

To a pressure tube was added 3-bromo-2-methoxy-4-methylpyridine (396 mg, 1.96 mmol), bis(pinacolato)diboron (597 mg, 2.35 mmol), Pd(dppf)2Cl2 (143 mg, 0.20 mmol), potassium acetate (384 mg, 3.92 mmol) and 1,4-dioxane (15 mL). The mixture was stirred at 95 C. for 4 hours. The residue was purified by silica gel flash chromatography (petroleum ether/ethyl acetate, 4:1) to give 2-methoxy-4-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine (250 mg, 51% yield) as a colourless oil. LCMS (ESI): [M+H]+=249.3.

According to the analysis of related databases, 717843-51-1, the application of this compound in the production field has become more and more popular.

Reference:
Patent; Genentech, Inc.; Chan, Bryan; Drobnick, Joy; Gazzard, Lewis; Heffron, Timothy; Liang, Jun; Malhotra, Sushant; Mendonca, Rohan; Rajapaksa, Naomi; Stivala, Craig; Tellis, John; Wang, Weiru; Wei, BinQing; Zhou, Aihe; Cartwright, Matthew W.; Lainchbury, Michael; Gancia, Emanuela; Seward, Eileen; Madin, Andrew; Favor, David; Fong, Kin Chiu; Hu, Yonghan; Good, Andrew; US2018/282282; (2018); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem