Adding a certain compound to certain chemical reactions, such as: 6980-08-1, 4-Chloro-3-nitropyridin-2-amine, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, 6980-08-1, blongs to pyridine-derivatives compound. Product Details of 6980-08-1
Step 4 A solution of N-(3-fluoro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)methanesulfonamide (CVII) (6.83 g, 20.75 mmol, 1.2 eq), 4-chloro-3-nitropyridin-2-amine (LXXXI) (3.0 g, 17.29 mmol, 1.0 eq), Na2CO3 (6.41 g, 60.52 mmol) and Pd(dppf)Cl2 (641.27 mg, 864.50 mumol) in dioxane (40 mL) and H2O (8 mL) was de-gassed and then heated to 80 C. overnight under N2. TLC (PE:EtOAc=1:1) showed the starting material was consumed completely. The reaction mixture was poured into H2O (300 mL). The mixture was extracted with EtOAc (3*250 mL). The organic phase was washed with saturated brine (300 mL), dried over anhydrous NaSO4, concentrated in vacuum to give a residue. The crude product was purified by silica gel chromatography (PE:EtOAc=10:1) to give N-(3-(2-amino-3-nitropyridin-4-yl)-5-fluorobenzyl) methanesulfonamide (CVIII) (2.2 g, 6.46 mmol, 37.4% yield) as brown solid. ESIMS found C13H13FN4O4S m/z 341.1 (M+H).
These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,6980-08-1, its application will become more common.
Reference:
Patent; Samumed, LLC; KC, Sunil Kumar; Wallace, David Mark; Cao, Jianguo; Chiruta, Chandramouli; Hood, John; (264 pag.)US2016/68550; (2016); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem