Analyzing the synthesis route of 504-29-0

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 504-29-0.

Some common heterocyclic compound, 504-29-0, molecular formula is C5H6N2, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.504-29-0

To a solution of 2-aminopyridine (50.0 g, 531 mmol) in methylene chloride (500 mL) were added triethylamine (81.4 mL, 584 mmol) and pivaloyl chloride (71.9 mL, 584 mmol) at 0 C., which was stirred for 4 hours and 30 minutes at room temperature. The reaction solution was partitioned into water and methylene chloride. The organic layer was washed with water and saturated aqueous sodium chloride, and dried over anhydrous magnesium sulfate, and the solvent was evaporated under a reduced pressure. To a solution of the resulting residue in methanol (300 mL) was added potassium carbonate (73.4 g, 531 mmol) at 0 C., which was stirred for 90 minutes at room temperature. The reaction solution was partitioned into water and ethyl acetate at room temperature. The organic layer was washed with saturated aqueous sodium chloride and dried over anhydrous magnesium sulfate, and the solvent was evaporated under a reduced pressure. Heptane (300 mL) was added to the residue, and the precipitated solids were filtered to obtain the title compound (80.2 g, 85%). The filtrate was then concentrated under a reduced pressure, and the residue was purified by silica gel column chromatography (heptane:ethyl acetate=2:1) to obtain the title compound (12.2 g, 13%). 1H-NMR Spectrum (DMSO-d6) delta (ppm): 1.22 (9H, s), 7.06-7.09 (1H, m), 7.72-7.77 (1H, m), 8.01-8.03 (1H, m), 8.29-8.31 (1H, m), 9.71 (1H, s).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 504-29-0.

Reference:
Patent; Eisai R&D Management Co., Ltd.; US2007/105904; (2007); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem