Adding a certain compound to certain chemical reactions, such as: 86847-84-9, N-(6-Chloropyridin-2-yl)pivalamide, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, Application In Synthesis of N-(6-Chloropyridin-2-yl)pivalamide, blongs to pyridine-derivatives compound. Application In Synthesis of N-(6-Chloropyridin-2-yl)pivalamide
Step 2: Synthesis of N-(6-chloro-3-iodopyridin-2-yl)-2,2-dimethylpropionamideTo a solution of N-(6-chloropyridin-2-yl)-2,2-dimethylpropionamide (20 g, 94 mmol) in dry THF (500 mL) at -78 C, 1.3 M t-BuLi in hexane (220 mL, 282 mmol) is added dropwise. The reaction mixture is stirred for 30 min and a solution of iodine (29 g, 114 mmol) in dry THF is added. The reaction mixture is stirred for 3 h at -78 C then is warmed to ambient temperature and stirred for another 1 h. The reaction mixture is quenched with IN HC1 and is extracted with ethyl acetate (2 x 250 mL). The organic layers are separated and washed with Na2S203 solution and saturated NaHC03 solution, respectively. The combined organic layers are dried (Na2S04) and evaporated under reduced pressure. The crude residue is purified by flash column chromatography using 20% EtO Ac/petroleum ether to afford the title compound as a pale yellow solid (15 g, 49%).
The synthetic route of 86847-84-9 has been constantly updated, and we look forward to future research findings.
Reference:
Patent; BOEHRINGER INGELHEIM INTERNATIONAL GMBH; BOYER, Stephen, James; BURKE, Jennifer; GUO, Xin; KIRRANE JR., Thomas, Martin; SNOW, Roger, John; ZHANG, Yunlong; WO2011/71725; (2011); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem