Electric Literature of 19346-43-1, As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 19346-43-1, name is 2-Fluoro-3-nitro-4-picoline, molecular formula is C6H5FN2O2, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.
18. Preparation of 3-Amino-2-fluoro-4-methylpyridine To a solution of 10.1 g (65 mmol) of 2-fluoro-4-methyl-3-nitropyridine in 200 mL of ethyl acetate was added 25 g (0.40 mol) of acetic acid and 0.8 g of 5 percent palladium on carbon catalyst. This mixture was shaken under 50 psig (pounds per square inch gauge) (2400 kiloPascals) pressure of hydrogen for 18 hours, was filtered, and was concentrated by evaporation under reduced pressure to obtain an oil. This oil was partitioned between dilute aqueous sodium bicarbonate and ether. The organic phase was separated, dried over magnesium sulfate, and filtered. The filtrate was concentrated by evaporation under reduced pressure and the residue was purified by column chromatography to obtain 7.2 g (88 percent of theory) of the title compound as a colorless solid, melting at 63-64 C. Nuclear Magnetic Resonance Spectrum (200 MHz (megaHertz), CDC13): 1 H: 7.4 (d, 1H, J=5.0); 6.8 (d, 1H, J=5.0); 3.7 (br, 2H); 2.1 (s, 3H); 13 C: 152.6 (d, J=229); 134.1 (d, J=8.6); 133.8 (d, J=14.5); 128.1 (d, J=27.1); 123.3, 16.4 (d, J=4.1).
While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 19346-43-1, 2-Fluoro-3-nitro-4-picoline.
Reference:
Patent; DowElanco; US5602075; (1997); A;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem