Adding a certain compound to certain chemical reactions, such as: 74115-13-2, 5-Bromo-3-pyridinol, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, Computed Properties of C5H4BrNO, blongs to pyridine-derivatives compound. Computed Properties of C5H4BrNO
To a solution of 5-bromopyridin-3-ol (L) (174 mg, 1.0 mmol) in DMF (3 mL) was added potassium carbonate (415 mg, 3.0 mmol). The slurry was heated at 90C for 1 h and then cooled to 25C. The (bromomethyl)benzene (LIV) (171 mg, 1.0 mmol) was added and the mixture was stirred at 25C overnight. The reaction was worked-up using a saturated sodium bicarbonate and EtOAc extraction. The product was purified by ISCO column (40-100% EtOAchexanes). The 3-(benzyloxy)-5-bromopyridine (LV) (105 mg, 0.398 mmol, 39.8 % yield) was obtained as yellow oil. ESIMS found for C,2H,oBrNO mlz 266.1 (M+H).
At the same time, in my other blogs, there are other synthetic methods of this type of compound,74115-13-2, 5-Bromo-3-pyridinol, and friends who are interested can also refer to it.
Reference:
Patent; SAMUMED, LLC.; KC, Sunil Kumar; WALLACE, David Mark; CAO, Jianguo; CHIRUTA, Chandramouli; HOOD, John; (240 pag.)WO2017/23975; (2017); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem