Bischoff, Angela published the artcileEffects of Nifedipine on Renal and Cardiovascular Responses to Neuropeptide Y in Anesthetized Rats, Safety of Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, the main research area is nifedipine renal cardiovascular response neuropeptide Y anesthesia; Y1 receptor; Y5 receptor; blood pressure; diuresis; natriuresis; neuropeptide Y; nifedipine; renal blood flow.
Neuropeptide Y (NPY) acts via multiple receptor subtypes termed Y1, Y2 and Y5. While Y1 receptor-mediated effects, e.g., in the vasculature, are often sensitive to inhibitors of L-type Ca2+ channels such as nifedipine, little is known about the role of such channels in Y5-mediated effects such as diuresis and natriuresis. Therefore, we explored whether nifedipine affects NPY-induced diuresis and natriuresis. After pre-treatment with nifedipine or vehicle, anesthetized rats received infusions or bolus injections of NPY. Infusion NPY (1μg/kg/min) increased diuresis and natriuresis, and this was attenuated by i.p. injection of nifedipine (3μg/kg). Concomitant decreases in heart rate and reductions of renal blood flow were not attenuated by nifedipine. Bolus injections of NPY (0.3, 1, 3, 10 and 30μg/kg) dose-dependently increased mean arterial pressure and renovascular vascular resistance; only the higher dose of nifedipine (100μg/kg/min i.v.) moderately inhibited these effects. We conclude that Y5-mediated diuresis and natriuresis are more sensitive to inhibition by nifedipine than Y1-mediated renovascular effects. Whether this reflects a general sensitivity of Y5 receptor-mediated responses or is specific for diuresis and natriuresis remains to be investigated.
Molecules published new progress about Anesthesia. 21829-25-4 belongs to class pyridine-derivatives, name is Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, and the molecular formula is C17H18N2O6, Safety of Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate.