Adding a certain compound to certain chemical reactions, such as: 89415-54-3, 5-Bromo-N2-methylpyridine-2,3-diamine, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, Product Details of 89415-54-3, blongs to pyridine-derivatives compound. Product Details of 89415-54-3
In a flask were combined 2-methylpropanamide (Aldrich, cat144436: 285 mg, 3.28 mmol), THF (2 mL) and triethyloxonium tetrafluoroborate (Aldrich, cat90520: 0.617 g, 3.25 mmol). The reaction mixture was allowed to stir at room temperature for 2 hours. The solvent was removed under reduced pressure and the residue was dissolved in ethanol (1.9 mL). To this residue was added a suspension of 5-bromo-N2-methylpyridine-2,3-diamine (200 mg, 0.99 mmol) [Combi-Blocks cat AN-3965] in ethanol (6.7 mL). The mixture was then stirred at 80 C. for 1 hour. After the crude reaction mixture had cooled to room temperature the solvent was removed under reduced pressure. The residue was purified by flash chromatography on a silica gel column eluting with 0 to 20% MeOH/DCM to give the desired product (48 mg, 19% yield). LC-MS calculated for C10H13BrN3 (M+H)+: m/z=254.0. found 254.0.
At the same time, in my other blogs, there are other synthetic methods of this type of compound,89415-54-3, 5-Bromo-N2-methylpyridine-2,3-diamine, and friends who are interested can also refer to it.
Reference:
Patent; Incyte Corporation; Wu, Liangxing; Konkol, Leah C.; Lajkiewicz, Neil; Lu, Liang; Xu, Meizhong; Yao, Wenqing; Yu, Zhiyong; Zhang, Colin; He, Chunhong; (107 pag.)US2016/9712; (2016); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem