Cao, Bing-Jun; Li, Ran; Huang, Xi-He published the artcile< Synthesis, structure and photophysical properties of two tetranuclear copper(I) iodide complexes based on acetylpyridine and diphosphine mixed ligands>, Application of C7H7NO, the main research area is copper iodide complex acetylpyridine diphosphine ligand structure photophys property; TADF; acetylpyridine; bis(diphenyphosphanyl)propane; cluster; copper(I) iodide; crystal structure; photoluminescence; tetramer; thermally activated delayed fluorescence.
Two copper(I) iodide tetramers, namely, [μ2-1,3-bis(diphenylphosphanyl)propane-κ2P:P′]di-μ3-iodido-di-μ2-iodido-[1-(pyridin-3-yl)ethan-1-one-κN]tetracopper(I) dichloromethane disolvate, [Cu4I4(C6H7NO)2(C27H26P2)2]·2CH2Cl2 (CuL3), and [μ2-1,3-bis(diphenylphosphanyl)propane-κ2P:P′]di-μ3-iodido-di-μ2-iodido-[1-(pyridin-4-yl)ethan-1-one-κN]tetracopper(I), [Cu4I4(C6H7NO)2(C27H26P2)2] (CuL4), have been synthesized from reactions of CuI, 1,3-bis(diphenylphosphanyl)propane (dppp) and 3- or 4-acetylpyridine (3/4-acepy). The complexes were characterized by elemental anal., IR spectroscopy, single-crystal X-ray diffraction (XRD), powder XRD and photoluminescence spectroscopy. Both complexes possess a stair-step [Cu4I4] cluster structure with a crystallog. inversion center located in the middle of a Cu2I2 ring (Z′ = 1/2). The dppp ligands each adopt a bidentate coordination mode that bridges two CuI centers on one side of the [Cu4I4] cluster and the acepy ligands act as terminal ligands. The solid-state samples of similar complexes show highly efficiency thermally activated delayed fluorescence (TADF) at room temperature At ambient temperature, both CuL3 and CuL4 exhibit photoluminescence, with a maximum emission in the region 560-580 nm and with short emissive decay times, but only phosphorescence was observed at 77 K. The narrow gaps between the higher lying singlet state and the triplet state, ΔE(S1 – T1), also confirm the presence of TADF. Structure anal. and consideration of photoluminescence indicates that the position of the acetyl group on the heterocyclic ligand has an obvious influence on the structural arrangement, on intermol. interactions and on the observed photophys. properties.
Acta Crystallographica, Section C: Structural Chemistry published new progress about Absorption spectra. 350-03-8 belongs to class pyridine-derivatives, and the molecular formula is C7H7NO, Application of C7H7NO.