Singh, Anshu’s team published research in Dalton Transactions in 2021 | CAS: 1122-54-9

4-Acetylpyridine(cas: 1122-54-9) belongs to pyridine. Pyridine is very deactivated towards electrophilic substitution with respect to benzene. For this reason classical formylation, using methods such as the Gattermann or Vilsmeier reactions, are not generally successful. Related Products of 1122-54-9

Singh, Anshu; Maji, Ankur; Joshi, Mayank; Choudhury, Angshuman R.; Ghosh, Kaushik published their research in Dalton Transactions in 2021. The article was titled 《Designed pincer ligand supported Co(II)-based catalysts for dehydrogenative activation of alcohols: Studies on N-alkylation of amines, α-alkylation of ketones and synthesis of quinolines》.Related Products of 1122-54-9 The article contains the following contents:

Base-metal catalysts Co1, Co2 and Co3 were synthesized from designed pincer ligands L1, L2 and L3 having NNN donor atoms, resp. Co1, Co2 and Co3 were characterized by IR, UV-visible and ESI-MS spectroscopic studies. Single crystal x-ray diffraction studies were studied to authenticate the mol. structures of Co1 and Co3. Catalysts Co1, Co2 and Co3 were used to study the dehydrogenative activation of alcs. for N-alkylation of amines, α-alkylation of ketones and synthesis of quinolines. Under optimized reaction conditions, a broad range of substrates including alcs., anilines and ketones were exploited. Control experiments for N-alkylation of amines, α-alkylation of ketones and synthesis of quinolines were examined to understand the reaction pathway. ESI-MS spectral studies were studied to characterize Co-alkoxide and Co-hydride intermediates. Reduction of styrene by evolved H gas during the reaction was studied to authenticate the dehydrogenative nature of the catalysts. Probable reaction pathways are proposed for N-alkylation of amines, α-alkylation of ketones and synthesis of quinolines from control experiments and detection of reaction intermediates. In the experimental materials used by the author, we found 4-Acetylpyridine(cas: 1122-54-9Related Products of 1122-54-9)

4-Acetylpyridine(cas: 1122-54-9) belongs to pyridine. Pyridine is very deactivated towards electrophilic substitution with respect to benzene. For this reason classical formylation, using methods such as the Gattermann or Vilsmeier reactions, are not generally successful. Related Products of 1122-54-9

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Elfinger, Matthias’s team published research in ChemSusChem in 2021 | CAS: 1122-54-9

4-Acetylpyridine(cas: 1122-54-9) belongs to pyridine. The basicity and metallophilic high donor number of these π-deficient systems has long favored them as ligands in metal catalysis. The last decade saw pyridine assume a stronger role as functional group for directed C–H oxidation/activation.Computed Properties of C7H7NO

Computed Properties of C7H7NOIn 2021 ,《Co-Catalyzed Synthesis of Primary Amines via Reductive Amination employing Hydrogen under very mild Conditions》 appeared in ChemSusChem. The author of the article were Elfinger, Matthias; Schoenauer, Timon; Thomae, Sabrina L. J.; Staeglich, Robert; Drechsler, Markus; Zobel, Mirijam; Senker, Juergen; Kempe, Rhett. The article conveys some information:

Nanostructured and reusable 3d-metal catalysts that operate with high activity and selectivity in important chem. reactions are highly desirable. Here, a cobalt catalyst was developed for the synthesis of primary amines via reductive amination employing hydrogen as the reducing agent and easy-to-handle ammonia, dissolved in water, as the nitrogen source. The catalyst operates under very mild conditions (1.5 mol% catalyst loading, 50°C and 10 bar H2 pressure) and outperforms com. available noble metal catalysts (Pd, Pt, Ru, Rh, Ir). A broad scope and a very good functional group tolerance were observed The key for the high activity seemed to be the used support: an N-doped amorphous carbon material with small and turbostratically disordered graphitic domains, which is microporous with a bimodal size distribution and with basic NH functionalities in the pores. After reading the article, we found that the author used 4-Acetylpyridine(cas: 1122-54-9Computed Properties of C7H7NO)

4-Acetylpyridine(cas: 1122-54-9) belongs to pyridine. The basicity and metallophilic high donor number of these π-deficient systems has long favored them as ligands in metal catalysis. The last decade saw pyridine assume a stronger role as functional group for directed C–H oxidation/activation.Computed Properties of C7H7NO

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Xie, Chao’s team published research in Nature Communications in 2021 | CAS: 1122-54-9

4-Acetylpyridine(cas: 1122-54-9) belongs to pyridine. Pyridine is a relatively complex molecule and exhibits a number of different bands in IR spectra. Among others, the bands characterizing the ν8a and ν19b modes have been found to be sensitive to the coordination or protonation of the molecule. Note that the band that is diagnostic for the PyH+ ion at about 1545 cm− 1 (ν19b mode) does not overlap with any of the other bands.Name: 4-Acetylpyridine

Xie, Chao; Lin, Longfei; Huang, Liang; Wang, Zixin; Jiang, Zhiwei; Zhang, Zehui; Han, Buxing published an article in 2021. The article was titled 《Zn-Nx sites on N-doped carbon for aerobic oxidative cleavage and esterification of C(CO)-C bonds》, and you may find the article in Nature Communications.Name: 4-Acetylpyridine The information in the text is summarized as follows:

Zn/NC-X catalysts, in which Zn2+ coordinated with N species on microporous N-doped carbon (NC) and X denoted the pyrolysis temperature, could effectively catalyze aerobic oxidative cleavage of C(CO)-C bonds and quant. converted acetophenone to Me benzoate with a yield of 99% at 100°C was reported. The Zn/NC-950 could be applied for a wide scope of acetophenone derivatives as well as more challenging alkyl ketones. Detail mechanistic investigations revealed that the catalytic performance of Zn/NC-950 could be attributed to the coordination between Zn2+ and N species to change the electronic state of the metal, synergetic effect of the Zn single sites with their surrounding N atoms, as well as the microporous structure with the high surface area and structural defects of the NC. In addition to this study using 4-Acetylpyridine, there are many other studies that have used 4-Acetylpyridine(cas: 1122-54-9Name: 4-Acetylpyridine) was used in this study.

4-Acetylpyridine(cas: 1122-54-9) belongs to pyridine. Pyridine is a relatively complex molecule and exhibits a number of different bands in IR spectra. Among others, the bands characterizing the ν8a and ν19b modes have been found to be sensitive to the coordination or protonation of the molecule. Note that the band that is diagnostic for the PyH+ ion at about 1545 cm− 1 (ν19b mode) does not overlap with any of the other bands.Name: 4-Acetylpyridine

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Baeumler, Christoph’s team published research in ChemSusChem in 2020 | CAS: 1122-54-9

4-Acetylpyridine(cas: 1122-54-9) belongs to pyridine. Pyridine is very deactivated towards electrophilic substitution with respect to benzene. For this reason classical formylation, using methods such as the Gattermann or Vilsmeier reactions, are not generally successful. Related Products of 1122-54-9

《The Synthesis of Primary Amines through Reductive Amination Employing an Iron Catalyst》 was published in ChemSusChem in 2020. These research results belong to Baeumler, Christoph; Bauer, Christof; Kempe, Rhett. Related Products of 1122-54-9 The article mentions the following:

Iron-catalyzed synthesis of primary amines through reductive amination was realized. A broad scope and a very good tolerance of functional groups were observed Ketones, including purely aliphatic ones, aryl-alkyl, dialkyl, and heterocyclic, as well as aldehydes were converted smoothly into their corresponding primary amines. In addition, the amination of pharmaceuticals, bioactive compounds, and natural products was demonstrated. Many functional groups, such as hydroxy, methoxy, dioxol, sulfonyl, and boronate ester substituents, were tolerated. The catalyst is easy to handle, selective, and reusable and ammonia dissolved in water could be employed as the nitrogen source. The key feature of this method includes the use of a specific Fe complex for the catalyst synthesis and an N-doped SiC material as catalyst support. The experimental process involved the reaction of 4-Acetylpyridine(cas: 1122-54-9Related Products of 1122-54-9)

4-Acetylpyridine(cas: 1122-54-9) belongs to pyridine. Pyridine is very deactivated towards electrophilic substitution with respect to benzene. For this reason classical formylation, using methods such as the Gattermann or Vilsmeier reactions, are not generally successful. Related Products of 1122-54-9

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Singh, Anshu’s team published research in Dalton Transactions in 2021 | CAS: 1122-54-9

4-Acetylpyridine(cas: 1122-54-9) belongs to pyridine. Pyridine is very deactivated towards electrophilic substitution with respect to benzene. For this reason classical formylation, using methods such as the Gattermann or Vilsmeier reactions, are not generally successful. Related Products of 1122-54-9

Singh, Anshu; Maji, Ankur; Joshi, Mayank; Choudhury, Angshuman R.; Ghosh, Kaushik published their research in Dalton Transactions in 2021. The article was titled 《Designed pincer ligand supported Co(II)-based catalysts for dehydrogenative activation of alcohols: Studies on N-alkylation of amines, α-alkylation of ketones and synthesis of quinolines》.Related Products of 1122-54-9 The article contains the following contents:

Base-metal catalysts Co1, Co2 and Co3 were synthesized from designed pincer ligands L1, L2 and L3 having NNN donor atoms, resp. Co1, Co2 and Co3 were characterized by IR, UV-visible and ESI-MS spectroscopic studies. Single crystal x-ray diffraction studies were studied to authenticate the mol. structures of Co1 and Co3. Catalysts Co1, Co2 and Co3 were used to study the dehydrogenative activation of alcs. for N-alkylation of amines, α-alkylation of ketones and synthesis of quinolines. Under optimized reaction conditions, a broad range of substrates including alcs., anilines and ketones were exploited. Control experiments for N-alkylation of amines, α-alkylation of ketones and synthesis of quinolines were examined to understand the reaction pathway. ESI-MS spectral studies were studied to characterize Co-alkoxide and Co-hydride intermediates. Reduction of styrene by evolved H gas during the reaction was studied to authenticate the dehydrogenative nature of the catalysts. Probable reaction pathways are proposed for N-alkylation of amines, α-alkylation of ketones and synthesis of quinolines from control experiments and detection of reaction intermediates. In the experimental materials used by the author, we found 4-Acetylpyridine(cas: 1122-54-9Related Products of 1122-54-9)

4-Acetylpyridine(cas: 1122-54-9) belongs to pyridine. Pyridine is very deactivated towards electrophilic substitution with respect to benzene. For this reason classical formylation, using methods such as the Gattermann or Vilsmeier reactions, are not generally successful. Related Products of 1122-54-9

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Dorofeeva, Victoria N.’s team published research in ACS Omega in 2019 | CAS: 1122-54-9

4-Acetylpyridine(cas: 1122-54-9) belongs to pyridine. The basicity and metallophilic high donor number of these π-deficient systems has long favored them as ligands in metal catalysis. The last decade saw pyridine assume a stronger role as functional group for directed C–H oxidation/activation.Recommanded Product: 4-Acetylpyridine

Recommanded Product: 4-AcetylpyridineIn 2019 ,《CoII Complexes with a Tripyridine Ligand, Containing a 2,6-Di-tert-butylphenolic Fragment: Synthesis, Structure, and Formation of Stable Radicals》 appeared in ACS Omega. The author of the article were Dorofeeva, Victoria N.; Pavlishchuk, Anna V.; Kiskin, Mikhail A.; Efimov, Nikolay N.; Minin, Vadim V.; Lytvynenko, Anton S.; Gavrilenko, Konstantin S.; Kolotilov, Sergey V.; Novotortsev, Vladimir M.; Eremenko, Igor L.. The article conveys some information:

Interaction of tripyridine ligand, bearing 2,6-di-tert-butylphenolic fragment (L, 2,6-di-tert-butyl-4-(3,5-bis(4-pyridyl)pyridyl)phenol) with CoII pivalate or chloride gave 1D coordination polymers [Co(L)Cl2]n·nEtOH (1) and [Co3(L)2(OH)(Piv)5]n (2) or trinuclear complex Co3(H2O)4(L)2Cl6 (3) (Piv- = pivalate). Chem. oxidation of L, 1-3 by PbO2 or K3[Fe(CN)6], as well as exposure of L (in solution or solid state) and 2 (in solid state) to UV-irradiation gave free radicals with g = 2.0024, which probably originated due to oxidation of 2,6-di-tert-butylphenolic groups. These radicals were stable during several days in solutions and more than one month in solid samples. Irradiation and oxidation of the solid samples probably caused formation of the phenoxyl radical only on their surface. It was shown by DFT calculations that exchange coupling between the unpaired electron of the phenoxyl and CoII ions were negligibly weak and could not affect EPR signal of the radical, as well as exchange coupling of CoII ions could not be transmitted by L. The latter conclusion was confirmed by the anal. of magnetic properties of 1: temperature dependency of magnetic susceptibility (χM) of 1 could be simulated by a simple model for isolated CoII ions.4-Acetylpyridine(cas: 1122-54-9Recommanded Product: 4-Acetylpyridine) was used in this study.

4-Acetylpyridine(cas: 1122-54-9) belongs to pyridine. The basicity and metallophilic high donor number of these π-deficient systems has long favored them as ligands in metal catalysis. The last decade saw pyridine assume a stronger role as functional group for directed C–H oxidation/activation.Recommanded Product: 4-Acetylpyridine

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Lau, Samantha’s team published research in Dalton Transactions in 2021 | CAS: 1122-54-9

4-Acetylpyridine(cas: 1122-54-9) belongs to pyridine. Pyridine derivatives lend themselves to many roles in the spirited field of supramolecular chemistry – whether as the ligand backbone of metal-organic polymers or presiding over the key electronic stations of nanodevices. In biochemistry, pyridine-containing cofactors are necessary nutrients on which our lives depend. Reference of 4-Acetylpyridine

Lau, Samantha; Provis-Evans, Cei B.; James, Alexander P.; Webster, Ruth L. published an article in 2021. The article was titled 《Hydroboration of aldehydes, ketones and CO2 under mild conditions mediated by iron(III) salen complexes》, and you may find the article in Dalton Transactions.Reference of 4-Acetylpyridine The information in the text is summarized as follows:

The hydroboration of aldehydes, ketones and CO2 is demonstrated using a cheap and air stable [Fe(salen)]2-μ-oxo pre-catalyst with pinacolborane (HBpin) as the reductant under mild conditions. This catalyst system chemoselectively hydroborates aldehydes over ketones and ketones over alkenes. The [Fe(salen)2]-μ-oxo pre-catalyst shows good efficacy at reducing wet CO2 with HBpin at room temperature4-Acetylpyridine(cas: 1122-54-9Reference of 4-Acetylpyridine) was used in this study.

4-Acetylpyridine(cas: 1122-54-9) belongs to pyridine. Pyridine derivatives lend themselves to many roles in the spirited field of supramolecular chemistry – whether as the ligand backbone of metal-organic polymers or presiding over the key electronic stations of nanodevices. In biochemistry, pyridine-containing cofactors are necessary nutrients on which our lives depend. Reference of 4-Acetylpyridine

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Muzalevskiy, Vasiliy M.’s team published research in Molecules in 2019 | CAS: 1122-54-9

4-Acetylpyridine(cas: 1122-54-9) belongs to pyridine. The basicity and metallophilic high donor number of these π-deficient systems has long favored them as ligands in metal catalysis. The last decade saw pyridine assume a stronger role as functional group for directed C–H oxidation/activation.Product Details of 1122-54-9

Product Details of 1122-54-9In 2019 ,《One-pot metal-free synthesis of 3-CF3-1,3-oxazinopyridines by reaction of pyridines with CF3CO-acetylenes》 appeared in Molecules. The author of the article were Muzalevskiy, Vasiliy M.; Sizova, Zoia A.; Belyaeva, Kseniya V.; Trofimov, Boris A.; Nenajdenko, Valentine G.. The article conveys some information:

The reaction of pyridines with trifluoroacetylated acetylenes was investigated. It was found that the reaction of various pyridines with two mols. of CF3CO-acetylenes proceeded under mild metal-free conditions. As a result, efficient stereoselective synthesis of 3-arylethynyl-3-trifluoromethyl-1,3-oxazinopyridines was elaborated. Target heterocycles were prepared in up to quant. yields. In the part of experimental materials, we found many familiar compounds, such as 4-Acetylpyridine(cas: 1122-54-9Product Details of 1122-54-9)

4-Acetylpyridine(cas: 1122-54-9) belongs to pyridine. The basicity and metallophilic high donor number of these π-deficient systems has long favored them as ligands in metal catalysis. The last decade saw pyridine assume a stronger role as functional group for directed C–H oxidation/activation.Product Details of 1122-54-9

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Xing, Xiu’s team published research in New Journal of Chemistry in 2022 | CAS: 1122-54-9

4-Acetylpyridine(cas: 1122-54-9) belongs to pyridine. Pyridine and pyridine-derived structures are privileged pharmacophores in medicinal chemistry and an essential functionality for organic chemists. As the prototypical π-deficient heterocycle, pyridine illustrates distinctive chemistry as both substrate and reagent. Related Products of 1122-54-9

Related Products of 1122-54-9In 2022 ,《Preparation of chiral aryl alcohols: a controllable enzymatic strategy via light-driven NAD(P)H regeneration》 appeared in New Journal of Chemistry. The author of the article were Xing, Xiu; Liu, Yan; Shi, Ming-Liang; Li, Kun; Fan, Xin-Yue; Wu, Zhong-Liu; Wang, Na; Yu, Xiao-Qi. The article conveys some information:

Controllable and mild photoenzymic production of chiral alcs. RCH(OH)R1 [R = Ph, 4-pyridyl, 2-naphthyl, etc.; R1 = H, Me, CH2CO2Me, etc.] was realized by coupling a versatile photochem. NAD(P)H regeneration system with (R)- or (S)-selective ketoreductases. The efficiency of NAD(P)H regeneration was improved using a rhodium functionalized metal organic framework, namely Rh-UiO-67, to adjust and control electron transport and electron utilization. Furthermore, six different ketoreductases could be successfully immobilized on Rh-UiO-67 and combined with the light-driven NAD(P)H regeneration system to produce chiral aryl alcs. Various chiral alcs. with complementary (R)- and (S)-conformations could be constructed by this method with high yields (97%) and excellent stereoselectivity (>99% ee). The results came from multiple reactions, including the reaction of 4-Acetylpyridine(cas: 1122-54-9Related Products of 1122-54-9)

4-Acetylpyridine(cas: 1122-54-9) belongs to pyridine. Pyridine and pyridine-derived structures are privileged pharmacophores in medicinal chemistry and an essential functionality for organic chemists. As the prototypical π-deficient heterocycle, pyridine illustrates distinctive chemistry as both substrate and reagent. Related Products of 1122-54-9

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Bori, Jugal’s team published research in Inorganica Chimica Acta in 2020 | CAS: 1122-54-9

4-Acetylpyridine(cas: 1122-54-9) belongs to pyridine. Pyridines are often used as catalysts or reagents; particular notice has been paid recently to how pyridine coordinates to metal centers enabling a wide range of valuable reactions. Quality Control of 4-Acetylpyridine

《A new route for the synthesis of 2,4-bis(2-pyridyl)-6-(pyridyl)pyrimidines: Synthesis and characterization of Co(II), Ni(II) complexes of 2,4,6-tris(2-pyridyl)pyrimidine》 was published in Inorganica Chimica Acta in 2020. These research results belong to Bori, Jugal; Mahata, Satyajit; Manivannan, Vadivelu. Quality Control of 4-Acetylpyridine The article mentions the following:

Using 2-acetylpyridine, sodium hydroxide and 2-cyanopyridine, 2,4,6-tris(2-pyridyl)pyrimidine (L1) was synthesized in good yield. Similarly, 2,4-bis(2-pyridyl)-6-(3-pyridyl)pyrimidine (L2) and 2,4-bis(2-pyridyl)-6-(4-pyridyl)pyrimidine (L3) were also synthesized by using resp. acetylpyridine. 2-Acetylpyridine reacted with sodium hydroxide to produce 2-oxo-2-(2-pyridyl)-1-ethanide, which behaves as a nucleophile towards 2-cyanopyridine. All three pyrimidines are potential multidentate ligand and by using L1 complexes of composition [Ni(L1)(H2O)3](NO3)2·4H2O (1), [Ni(L1)2](NO3)2·2H2O (2) and [Co(L1)2](NO3)2·1.5H2O (3) were isolated and structurally characterized. In 1-3, L1 behaves as a tridentate pincer type ligand, DFT calculations performed on L1-L3 indicate that energy difference between HOMO and LUMO is 4.544, 4.643 and 4.533 eV, resp. In the experiment, the researchers used many compounds, for example, 4-Acetylpyridine(cas: 1122-54-9Quality Control of 4-Acetylpyridine)

4-Acetylpyridine(cas: 1122-54-9) belongs to pyridine. Pyridines are often used as catalysts or reagents; particular notice has been paid recently to how pyridine coordinates to metal centers enabling a wide range of valuable reactions. Quality Control of 4-Acetylpyridine

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem