Le-Quang, Long’s team published research in Chemical Communications (Cambridge, United Kingdom) in 2019 | CAS: 1134-35-6

4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6) is used in the synthesis of a series of o-phenanthroline-substituted ruthenium(II) complexes.Formula: C12H12N2 Furthermore, 4,4′-Dimethyl-2,2′-bipyridine is used as a chemical Intermediate. It can be used for the determination of ferrous and cyanide compounds.

The author of 《Immobilization of Mn(I) and Ru(II) polypyridyl complexes on TiO2 nanoparticles for selective photoreduction of CO2 to formic acid》 were Le-Quang, Long; Stanbury, Matthew; Chardon-Noblat, Sylvie; Mouesca, Jean-Marie; Maurel, Vincent; Chauvin, Jerome. And the article was published in Chemical Communications (Cambridge, United Kingdom) in 2019. Formula: C12H12N2 The author mentioned the following in the article:

TiO2 nanoparticles are successively functionalized with [Mn(κ2N1,N2-ttpy)(CO)3Br] as catalyst and [Ru(bpy)3]2+ as photosensitizer to yield RuII/TiO2/MnI. Under continuous irradiation at 470 nm and in the presence of a sacrificial electron donor, this triad reduces CO2 to HCOOH (TONmax = 27) with 100% selectivity. The experimental process involved the reaction of 4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6Formula: C12H12N2)

4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6) is used in the synthesis of a series of o-phenanthroline-substituted ruthenium(II) complexes.Formula: C12H12N2 Furthermore, 4,4′-Dimethyl-2,2′-bipyridine is used as a chemical Intermediate. It can be used for the determination of ferrous and cyanide compounds.

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Durand, Nicolas’s team published research in Chemical Communications (Cambridge, United Kingdom) in 2020 | CAS: 1134-35-6

4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6) is used in the synthesis of a series of o-phenanthroline-substituted ruthenium(II) complexes.SDS of cas: 1134-35-6 Furthermore, 4,4′-Dimethyl-2,2′-bipyridine is used as a chemical Intermediate. It can be used for the determination of ferrous and cyanide compounds.

SDS of cas: 1134-35-6In 2020 ,《Unexpected disruption of the dimensionality-driven two-photon absorption enhancement within a multipolar polypyridyl ruthenium complex series》 was published in Chemical Communications (Cambridge, United Kingdom). The article was written by Durand, Nicolas; Mhanna, Rana; Savel, Paul; Akdas-Kilic, Huriye; Malval, Jean-Pierre; Soppera, Olivier; Fillaut, Jean-Luc. The article contains the following contents:

The dimensionality-driven 2-photon absorption (2PA) enhancement effect is studied in functionalized bipyridyl Ru complexes. The design strategy leads to very high 2PA responses up to ~1500 GM. The 2PA performance vs. dimensionality correlation reaches an unexpected limit stemming from anti-cooperative interchromophoric couplings. The experimental process involved the reaction of 4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6SDS of cas: 1134-35-6)

4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6) is used in the synthesis of a series of o-phenanthroline-substituted ruthenium(II) complexes.SDS of cas: 1134-35-6 Furthermore, 4,4′-Dimethyl-2,2′-bipyridine is used as a chemical Intermediate. It can be used for the determination of ferrous and cyanide compounds.

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Cedillo-Gutierrez, Erika Lorena’s team published research in European Journal of Medicinal Chemistry in 2020 | CAS: 1134-35-6

4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6) is used in the synthesis of a series of o-phenanthroline-substituted ruthenium(II) complexes.Quality Control of 4,4′-Dimethyl-2,2′-bipyridine Furthermore, 4,4′-Dimethyl-2,2′-bipyridine is used as a chemical Intermediate. It can be used for the determination of ferrous and cyanide compounds.

Quality Control of 4,4′-Dimethyl-2,2′-bipyridineIn 2020 ,《Identification of descriptors for structure-activity relationship in ruthenium (II) mixed compounds with antiparasitic activity》 appeared in European Journal of Medicinal Chemistry. The author of the article were Cedillo-Gutierrez, Erika Lorena; Hernandez-Ayala, Luis Felipe; Torres-Gutierrez, Carolina; Reina, Miguel; Flores-Alamo, Marcos; Carrero, Julio C.; Ugalde-Saldivar, Victor M.; Ruiz-Azuara, Lena. The article conveys some information:

Herein is presented the synthesis, characterization, electrochem. studies, DFT calculations and in vitro evaluation of amoebicidal activity in trophozoites of Entamoeba histolytica of twenty ruthenium(II) mixed compounds with general formulas: [Ru(pdto)(E-E)]Clx (E-E bidentate, either neutral or neg. charged ligands). For compounds under study, O-O, N-O and N-N auxiliary donor ligands demonstrate to have a crucial impact on the electronic properties and that it is possible to modulate the antiparasitic activity. Among analyzed complexes, only four present a better performance compared to typically used metronidazole drug (IC50 < 6.80μmol/L) to treat amebiasis disease. For studied compounds, structure-activity relations are strongly determined by either the redox potential (E1/2) of RuII/RuIII and calculated molar volume (V) of the complexes. The experimental part of the paper was very detailed, including the reaction process of 4,4'-Dimethyl-2,2'-bipyridine(cas: 1134-35-6Quality Control of 4,4′-Dimethyl-2,2′-bipyridine)

4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6) is used in the synthesis of a series of o-phenanthroline-substituted ruthenium(II) complexes.Quality Control of 4,4′-Dimethyl-2,2′-bipyridine Furthermore, 4,4′-Dimethyl-2,2′-bipyridine is used as a chemical Intermediate. It can be used for the determination of ferrous and cyanide compounds.

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Sanchez, Monica L. K.’s team published research in Chemical Communications (Cambridge, United Kingdom) in 2019 | CAS: 1134-35-6

4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6) is used as a chemical Intermediate. It can be used for the determination of ferrous and cyanide compounds.Reference of 4,4′-Dimethyl-2,2′-bipyridine Furthermore, 4,4′-Dimethyl-2,2′-bipyridine is used in the synthesis of a series of o-phenanthroline-substituted ruthenium(II) complexes.

In 2019,Chemical Communications (Cambridge, United Kingdom) included an article by Sanchez, Monica L. K.; Wu, Chang-Hao; Adams, Michael W. W.; Dyer, R. Brian. Reference of 4,4′-Dimethyl-2,2′-bipyridine. The article was titled 《Optimizing electron transfer from CdSe QDs to hydrogenase for photocatalytic H2 production》. The information in the text is summarized as follows:

A series of viologen related redox mediators of varying reduction potential has been characterized and their utility as electron shuttles between CdSe quantum dots and hydrogenase enzyme has been demonstrated. Tuning the mediator LUMO energy optimizes the performance of this hybrid photocatalytic system by balancing electron transfer rates of the shuttle. In the experimental materials used by the author, we found 4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6Reference of 4,4′-Dimethyl-2,2′-bipyridine)

4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6) is used as a chemical Intermediate. It can be used for the determination of ferrous and cyanide compounds.Reference of 4,4′-Dimethyl-2,2′-bipyridine Furthermore, 4,4′-Dimethyl-2,2′-bipyridine is used in the synthesis of a series of o-phenanthroline-substituted ruthenium(II) complexes.

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Behrman, Edward J.’s team published research in Acta Crystallographica, Section E: Crystallographic Communications in 2020 | CAS: 1134-35-6

4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6) is used as a chemical Intermediate. It can be used for the determination of ferrous and cyanide compounds.Synthetic Route of C12H12N2 Furthermore, 4,4′-Dimethyl-2,2′-bipyridine is used in the synthesis of a series of o-phenanthroline-substituted ruthenium(II) complexes.

《Crystal structure of 4,15-dimethyl-7,12-diazoniatricyclo[10.4.0.02,7]-hexadeca-1(12),2,4,6,13,15-hexaene dibromide monohydrate》 was published in Acta Crystallographica, Section E: Crystallographic Communications in 2020. These research results belong to Behrman, Edward J.; Hansen, Alexandar L.; Yuan, Chunhua; Parkin, Sean. Synthetic Route of C12H12N2 The article mentions the following:

The title compound, C16H20N22+·2Br-·H2O (1) is a member of the class of compounds called viologens. Viologens are quaternary salts of dipyridyls and are especially useful as redox indicators as a result of their large neg. one-electron reduction potentials. Compound 1 consists of a dication composed of a pair of 4-methylpyridine rings mutually joined at the 2-position, with a dihedral angle between the pyridine rings of 62.35 (4)° . In addition, the rings are tethered via the pyridine nitrogen atoms by a tetramethylene bridge. Charge balance is provided by a pair of bromide anions, which are hydrogen bonded to a single water mol. [DO·cdtcdtBr = 3.3670 (15) and 3.3856 (15) Å]. The crystal structure of 1, details of an improved synthesis, and a full anal. of its NMR spectra are presented.4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6Synthetic Route of C12H12N2) was used in this study.

4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6) is used as a chemical Intermediate. It can be used for the determination of ferrous and cyanide compounds.Synthetic Route of C12H12N2 Furthermore, 4,4′-Dimethyl-2,2′-bipyridine is used in the synthesis of a series of o-phenanthroline-substituted ruthenium(II) complexes.

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Juwita, Ratna’s team published research in Journal of Materials Chemistry A: Materials for Energy and Sustainability in 2020 | CAS: 1134-35-6

4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6) is used as a chemical Intermediate. It can be used for the determination of ferrous and cyanide compounds.COA of Formula: C12H12N2 Furthermore, 4,4′-Dimethyl-2,2′-bipyridine is used in the synthesis of a series of o-phenanthroline-substituted ruthenium(II) complexes.

《Osmium sensitizer with enhanced spin-orbit coupling for panchromatic dye-sensitized solar cells》 was published in Journal of Materials Chemistry A: Materials for Energy and Sustainability in 2020. These research results belong to Juwita, Ratna; Lin, Jian-You; Lin, Shi-Jie; Liu, Yu-Chi; Wu, Tsung-Yu; Feng, Yu-Ming; Chen, Chia-Yuan; Gavin Tsai, Hui-Hsu; Wu, Chun-Geuy. COA of Formula: C12H12N2 The article mentions the following:

Low-lying triplet metal-to-ligand charge transfer (3MLCT) transitions of osmium complexes induced by spin-orbit coupling (SOC) are promising for extending the photocurrent response in dye-sensitized solar cells. In this study, a new osmium complex (CYC-33O) is presented, incorporating a 2-thiohexyl-3,4-ethylenedioxythiophene functionalized bipyridyl ancillary ligand to red-shift the absorption and enhance the absorbance of singlet and triplet metal-to-ligand charge transfer (1MLCT and 3MLCT) transitions. Time-dependent d. functional theory (TDDFT) calculations show that the reinforced 1MLCT and 3MLCT transitions of CYC-33O are mainly from osmium to the 4,4′,4′′-tricarboxy-2,2′:6′,2′′-terpyridine anchoring ligand, increasing the heterogeneous electron transfer between CYC-33O and TiO2. The device sensitized with CYC-33O exhibits panchromatic conversion beyond 1000 nm, yielding a photocurrent d. of 19.38 mA cm-2, which is much higher than those of the cells based on the ruthenium analog (CYC-33R) and model osmium complex (Os-3) sensitizers. In the part of experimental materials, we found many familiar compounds, such as 4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6COA of Formula: C12H12N2)

4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6) is used as a chemical Intermediate. It can be used for the determination of ferrous and cyanide compounds.COA of Formula: C12H12N2 Furthermore, 4,4′-Dimethyl-2,2′-bipyridine is used in the synthesis of a series of o-phenanthroline-substituted ruthenium(II) complexes.

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Tritton, Daniel Nnaemaka’s team published research in Journal of Materials Chemistry A: Materials for Energy and Sustainability in 2020 | CAS: 1134-35-6

4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6) is used as a chemical Intermediate. It can be used for the determination of ferrous and cyanide compounds.Computed Properties of C12H12N2 Furthermore, 4,4′-Dimethyl-2,2′-bipyridine is used in the synthesis of a series of o-phenanthroline-substituted ruthenium(II) complexes.

《Iridium motif linked porphyrins for efficient light-driven hydrogen evolution via triplet state stabilization of porphyrin》 was written by Tritton, Daniel Nnaemaka; Bodedla, Govardhana Babu; Tang, Geliang; Zhao, Jianzhang; Kwan, Chak-Shing; Leung, Ken Cham-Fai; Wong, Wai-Yeung; Zhu, Xunjin. Computed Properties of C12H12N2 And the article was included in Journal of Materials Chemistry A: Materials for Energy and Sustainability in 2020. The article conveys some information:

Two new iridium motif linked porphyrins, MBPyZnP-Ir and TBPyZnP-Ir are developed for photocatalytic hydrogen evolution (PHE). The tetra-iridium linked one, TBPyZnP-Ir, displayed the highest H2 production rate (ηH2) of 16.12 mmol g-1 h-1 within 5 h of irradiation, which is over 2.73-fold higher than MBPyZnP-Ir (5.90 mmol g-1 h-1) and much higher than their precursors TBPyZnP (0.12 mmol g-1 h-1) and MBPyZnP (0.06 mmol g-1 h-1) without iridium. The superior ηH2 of TBPyZnP-Ir could be explained by the iridium motifs linked to the porphyrin, stabilizing the triplet states of the porphyrin through intramol. energy transfer; thus enhancing electron transfer from the triplet photo-excited porphyrin moiety to the cobaloxime co-catalyst and consequently proton reduction The experimental process involved the reaction of 4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6Computed Properties of C12H12N2)

4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6) is used as a chemical Intermediate. It can be used for the determination of ferrous and cyanide compounds.Computed Properties of C12H12N2 Furthermore, 4,4′-Dimethyl-2,2′-bipyridine is used in the synthesis of a series of o-phenanthroline-substituted ruthenium(II) complexes.

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Daryanavard, Marzieh’s team published research in Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy in 2020 | CAS: 1134-35-6

4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6) is used as a chemical Intermediate. It can be used for the determination of ferrous and cyanide compounds.Recommanded Product: 4,4′-Dimethyl-2,2′-bipyridine Furthermore, 4,4′-Dimethyl-2,2′-bipyridine is used in the synthesis of a series of o-phenanthroline-substituted ruthenium(II) complexes.

《A new mononuclear zinc(II) complex: Crystal structure, DNA- and BSA-binding, and molecular modeling; in vitro cytotoxicity of the Zn(II) complex and its nanocomplex》 was written by Daryanavard, Marzieh; Jannesari, Zahra; Javeri, Mandana; Abyar, Fatemeh. Recommanded Product: 4,4′-Dimethyl-2,2′-bipyridine And the article was included in Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy in 2020. The article conveys some information:

A new mononuclear Zn(II) complex, [Zn(Me2bpy)3](PF6)2·DMF (Me2bpy = 4,4′-dimethyl-2,2′-bipyridine), has been synthesized and fully characterized. Binding studies of the Zn(II) complex with fish sperm DNA (FS-DNA) and bovine serum albumin (BSA) were investigated using cyclic voltammetry, UV-Vis and fluorescence spectroscopies. The results showed that the majority of the interaction modes between the Zn(II) complex and DNA is a combination of the electrostatic and minor groove bindings, and the microenvironment of three aromatic amino acids residues is changed due to the interaction of the Zn(II) complex with BSA. In vitro cytotoxicity studies of the Zn(II) complex and its nanocomplex against three human carcinoma cell lines (MCF-7, A-549, and HT-29) using an MTT assay indicated that the cytotoxicity of both compounds against HT-29 and MCF-7 is higher than A-549. Moreover, the results clearly demonstrated that the aqueous colloid of the Zn(II) nanocomplex is more effective than the complex solution against HT-29 and MCF-7 cells under the same exptl. conditions. The microscopic analyses of the cancer cells showed that the Zn(II) complex apparently induces the cell apoptosis. The interactions of the Zn(II) complex with DNA and BSA were also modeled using mol. docking. The results are in good agreement with the exptl. findings. In the experiment, the researchers used many compounds, for example, 4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6Recommanded Product: 4,4′-Dimethyl-2,2′-bipyridine)

4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6) is used as a chemical Intermediate. It can be used for the determination of ferrous and cyanide compounds.Recommanded Product: 4,4′-Dimethyl-2,2′-bipyridine Furthermore, 4,4′-Dimethyl-2,2′-bipyridine is used in the synthesis of a series of o-phenanthroline-substituted ruthenium(II) complexes.

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Pourziad, Sakineh’s team published research in Journal of Industrial and Engineering Chemistry (Amsterdam, Netherlands) in 2020 | CAS: 1134-35-6

4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6) is used in the synthesis of a series of o-phenanthroline-substituted ruthenium(II) complexes.Synthetic Route of C12H12N2 Furthermore, 4,4′-Dimethyl-2,2′-bipyridine is used as a chemical Intermediate. It can be used for the determination of ferrous and cyanide compounds.

《Improved antifouling and self-cleaning ability of PVDF ultrafiltration membrane grafted with polymer brushes for oily water treatment》 was written by Pourziad, Sakineh; Omidkhah, Mohammad Reza; Abdollahi, Mahdi. Synthetic Route of C12H12N2 And the article was included in Journal of Industrial and Engineering Chemistry (Amsterdam, Netherlands) in 2020. The article conveys some information:

This study focuses on the modification of com. polyvinylidene fluoride (PVDF) membranes using surface-initiated atom transfer radical polymerization (SI-ATRP) method. Poly(N-isopropylacrylamide) (PNIPAAm) was grafted from PVDF surface and then PEGMA was grafted onto the PVDF-g-PNIPAAm membrane. The aim of the research was to prepare membranes that simultaneously have antifouling and self-cleaning properties. PNIPAAm (lower block) was grafted to give the membrane temperature sensitive property and PPEGMA (upper block) was used to improve hydrophilicity. Morphol., topog. and chem. composition of the modified membranes were completely characterized. Antifouling and cleaning ability of modified membranes were investigated using synthetic oily water. Moreover, the role of PEGMA polymerization time on the membrane performance was examined PNIPAAm-b-PPEGMA modified membrane achieved 64% decrease in fouling ratio compared to unmodified PVDF membrane at best condition. The flux recovery was 99.1% for modified membrane at this condition. Furthermore, the unmodified PVDF membrane showed 91.1% oil rejection; while the modified membrane could reject 98.2% oil mols. The final flux of all modified membranes were higher than unmodified membrane. These results indicated that PNIPAAm-b-PPEGMA modified membranes have excellent fouling resistance and self-cleaning ability. In the part of experimental materials, we found many familiar compounds, such as 4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6Synthetic Route of C12H12N2)

4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6) is used in the synthesis of a series of o-phenanthroline-substituted ruthenium(II) complexes.Synthetic Route of C12H12N2 Furthermore, 4,4′-Dimethyl-2,2′-bipyridine is used as a chemical Intermediate. It can be used for the determination of ferrous and cyanide compounds.

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem