Adding a certain compound to certain chemical reactions, such as: 135124-71-9, 5-(Hydroxymethyl)nicotinonitrile, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, 135124-71-9, blongs to pyridine-derivatives compound. Product Details of 135124-71-9
d) 5-Cyano-pyridine-3-carbaldehyde A black suspension of (5-cyano-pyridin-3-yl)-methanol (0.070 g, 0.52 mmol), anhydrous CH2Cl2 (1.04 mL) and manganese oxide (0.181 g, 2.09 mmol) was heated to reflux and monitored by TLC. After 8 h, the reaction mixture was cooled to room temperature and additional manganese oxide (0.095 g, 1.1 mmol) was added to the reaction flask. The reaction mixture was then heated to reflux. After 18 h, the reaction was still not complete by TLC and additional manganese oxide (0.097 g, 1.1 mmol) was added to the reaction flask. After heating at 60 C. for 72 h, the reaction mixture was cooled to room temperature, diluted with EtOAc (50 mL), passed through celite and washed with additional EtOAc (50 mL). The organic filtrate was dried over MgSO4, filtered through sintered glass and concentrated to yield 0.064 g (93%) of a white solid. It was purified by column chromatography (elution with EtOAC:hexanes, 1:3) and yielded 0.038 g (55%) of the title compound as a white solid. 1H NMR (CDCl3): 10.17 (s, 1H), 9.28 (d, J=1.9 Hz, 1H), 9.11 (d, J=2.2 Hz, 1H), 8.45 (dd, J=2.2, 1.9 Hz, 1H).
These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,135124-71-9, its application will become more common.
Reference:
Patent; Cytovia, Inc.; US2006/104998; (2006); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem