Extended knowledge of 3,5-Dichloroisonicotinic acid

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 13958-93-5, 3,5-Dichloroisonicotinic acid, other downstream synthetic routes, hurry up and to see.

Electric Literature of 13958-93-5, Adding some certain compound to certain chemical reactions, such as: 13958-93-5, name is 3,5-Dichloroisonicotinic acid,molecular formula is C6H3Cl2NO2, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 13958-93-5.

Preparation of 3,5-dichloro-N-(4-hydroxymethyl-phenyl)-isonicotinamide: A suspension of 3,5-dichloroisonicotinic acid (128 mg, 0.667 mmol) in thionyl chloride (2 mL) was heated at reflux for 2 h, then concentrated. To the residue was added 4-aminobenzyl alcohol (123 mg, 0.999 mmol) and THF (2.2 mL), and the mixture was stirred at room temperature for 19 h. The mixture was filtered, and the filtrate was concentrated to give a yellow foam (125 mg, 63%). 1H NMR (CD3OD) delta 4.60 (s, 2H), 7.38 (d, 2H, J=8.7 Hz), 7.63 (d, 2H, J=8.4 Hz), 8.66 (s, 2H).

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 13958-93-5, 3,5-Dichloroisonicotinic acid, other downstream synthetic routes, hurry up and to see.

Reference:
Patent; Bridger, Gary; Skerlj, Renato; Kaller, Al; Harwig, Curtis; Bogucki, David; Wilson, Trevor R.; Crawford, Jason; McEachern, Ernest J.; Atsma, Bem; Nan, Siqiao; Zhou, Yuanxi; Schols, Dominique; Smith, Christopher Dennis; Di Fluri, Maria Rosaria; US2002/147192; (2002); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Brief introduction of 3,5-Dichloroisonicotinic acid

At the same time, in my other blogs, there are other synthetic methods of this type of compound,13958-93-5, 3,5-Dichloroisonicotinic acid, and friends who are interested can also refer to it.

Related Products of 13958-93-5, Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps,and cheap raw materials. 13958-93-5, name is 3,5-Dichloroisonicotinic acid. A new synthetic method of this compound is introduced below.

Example C(63) [4-Amino-2-(1H-benzoimidazol-5-yl-amino)-thiazol-5-yl]-(3,5-dichloro-pyridin-4-yl)-methanone 4-Bromoacetyl-3,5-dichloropyridine, which has the structural formula was first prepared as follows. A mixture of 3,5-dichloropyridine-4-carboxylic acid (4.00 g, 20.9 mmol; Cale et al., J. Med. Chem., vol. 32 (1989), pp. 2178-2199), benzene (20 mL), DMF (0.4 mL), and thionyl chloride (3.80 mL, 52.0 mmol) was heated at reflux for 60 min, allowed to cool to ambient temperature, concentrated in vacuo, suspended in ether (20 mL), and cautiously treated with a solution of trimethylsilyldiazomethane (25 mL of 2.0 M in hexanes). After 72 hours, 48% HBr (18 mL) was carefully added dropwise over 20 min, initially with vigorous gas evolution. After 30 min, the mixture was made alkaline carefully with NaHCO3 and extracted with ether. The ethereal layers were dried over Na2SO4 and evaporated to give an orange oil, which was purified via column chromatography with 50% CH2Cl2/hex eluant to separate 2.50 g (51%) of 3,5-dichloropyridine-4-carbonyl chloride as a yellow oil, providing desired product, 2.00 g (36%) of pale yellow crystals that darkened at ambient temperature, which was used without further purification. NMR (CDCl3): delta 8.58 (2H, s), 4.37 (2H, s). Anal. Calcd for C7H4BrCl2NO.0.02C6H14: C, 31.60; H, 1.59; N, 5.18. Found: C, 31.92; H, 1.59; N, 5.24.

At the same time, in my other blogs, there are other synthetic methods of this type of compound,13958-93-5, 3,5-Dichloroisonicotinic acid, and friends who are interested can also refer to it.

Reference:
Patent; Agouron Pharmaceuticals Inc.; US6569878; (2003); B1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

The important role of 3,5-Dichloroisonicotinic acid

Statistics shows that 13958-93-5 is playing an increasingly important role. we look forward to future research findings about 3,5-Dichloroisonicotinic acid.

Related Products of 13958-93-5, With the rapid development and complex challenges of chemical substances, the synthesis of new drugs is usually one of the most effective ways to increase yield.13958-93-5, name is 3,5-Dichloroisonicotinic acid, molecular formula is C6H3Cl2NO2, molecular weight is 192, as common compound, the synthetic route is as follows.

Preparation of (3,5-dichloro-pyridin-4-yl)-(3-hydroxymethyl-piperidin-1-yl)-methanone: To a suspension of 3,5-dichloroisonicotinic acid (250 mg, 1.30 mmol) in CH2Cl2 (6.5 mL) was added DMF (cat.) and oxalyl chloride (0.45 mL, 5.2 mmol), and the mixture was stirred at room temperature for 2 h then concentrated in vacuo. To the residue was added THF (2 mL), Et3N (0.27 mL, 1.9 mmol), and a solution of 3-piperidinemethanol (150 mg, 1.30 mmol) in THF (4.5 mL), and the mixture was stirred at room temperature for 21 h. The mixture was diluted with CH2Cl2 (50 mL) and brine (30 mL) and the phases were separated. The organic layer was washed with brine (2*50 mL) and saturated NaHCO3 (2*50 mL). The organic layer was dried (MgSO4), filtered, concentrated, and dried in vacuo to afford a crude oil. Purification of the crude material by column chromatography on silica gel (100:5:1 CH2Cl2/MeOH/NH4OH) gave a yellow oil (mixture of isomers) (147 mg, 39%). 1H NMR (CDCl3) delta 1.28-1.96 (m, 4H), 2.89-3.26 (m, 3H), 3.35-3.45 (m, 1H), 3.50-3.72 (m, 2H), 4.29-4.56 (m, 1H), 8.54 (m, 2H).

Statistics shows that 13958-93-5 is playing an increasingly important role. we look forward to future research findings about 3,5-Dichloroisonicotinic acid.

Reference:
Patent; Bridger, Gary; Kaller, Al; Harwig, Curtis; Skerlj, Renato; Bogucki, David; Wilson, Trevor R.; Crawford, Jason; McEachern, Ernest J.; Atsma, Bem; Nan, Siqiao; Zhou, Yuanxi; Schols, Dominique; Smith, Christopher D.; Di Fluri, Maria R.; US2004/19058; (2004); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem