Analyzing the synthesis route of 5-Chloro-2-cyano-3-methylpyridine

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,156072-84-3, its application will become more common.

Electric Literature of 156072-84-3, Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps,and cheap raw materials. 156072-84-3, name is 5-Chloro-2-cyano-3-methylpyridine. A new synthetic method of this compound is introduced below.

To a solution of 5-chloro-3-methylpicolinonitrile (24.0 g, 157 mmol) in EtOH (100 mL) was added NaOH 5. ON (110 ml, 550 mmol). The resulting mixture was refluxed at 90 C for 18 h. After cooling to RT, the reaction mixture was conentrated, diluted with water and the pH of the solution was adjusted to 4 by addition of 5N HC1. The solid that precipitated was filtered and set aside. The filtrate was extracted with EtOAc (2X). The aqueous layer was again acidified with 5N HC1 to pH 4 and extracted with EtOAc (2X). The EtOAc extracts were combined, dried, and concentrated. The solid obtained from all the workup steps were combined and dried in a high vac oven at 40 C for 12 h to give the title compound 5-chloro-3-methylpicolinic acid (24.1 g, 140 mmol, 89 % yield). LC/MS (ESf ) m/z = 172.0 (M+H)+; H NMR (400 MHz, CHLOROFORM -J) delta ppm 11.29 (br. s., 1 H), 8.41 (d, J=1.76 Hz, 1 H), 7.73 (d, J=1.76 Hz, 1 H), 2.75 (s, 3 H)

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,156072-84-3, its application will become more common.

Reference:
Patent; AMGEN INC.; MINATTI, Ana Elena; LOW, Jonathan, D.; ALLEN, Jennifer, R.; AMEGADZIE, Albert; BROWN, James; FROHN, Michael, J.; GUZMAN-PEREZ, Angel; HARRINGTON, Paul, E.; LOPEZ, Patricia; MA, Vu Van; NISHIMURA, Nobuko; QIAN, Wenyuan; RUMFELT, Shannon; RZASA, Robert, M.; SHAM, Kelvin; SMITH, Adrian, L.; WHITE, Ryan; XUE, Qiufen; WO2014/138484; (2014); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Analyzing the synthesis route of 5-Chloro-2-cyano-3-methylpyridine

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,156072-84-3, its application will become more common.

Electric Literature of 156072-84-3, Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps,and cheap raw materials. 156072-84-3, name is 5-Chloro-2-cyano-3-methylpyridine. A new synthetic method of this compound is introduced below.

To a solution of 5-chloro-3-methylpicolinonitrile (24.0 g, 157 mmol) in EtOH (100 mL) was added NaOH 5. ON (110 ml, 550 mmol). The resulting mixture was refluxed at 90 C for 18 h. After cooling to RT, the reaction mixture was conentrated, diluted with water and the pH of the solution was adjusted to 4 by addition of 5N HC1. The solid that precipitated was filtered and set aside. The filtrate was extracted with EtOAc (2X). The aqueous layer was again acidified with 5N HC1 to pH 4 and extracted with EtOAc (2X). The EtOAc extracts were combined, dried, and concentrated. The solid obtained from all the workup steps were combined and dried in a high vac oven at 40 C for 12 h to give the title compound 5-chloro-3-methylpicolinic acid (24.1 g, 140 mmol, 89 % yield). LC/MS (ESf ) m/z = 172.0 (M+H)+; H NMR (400 MHz, CHLOROFORM -J) delta ppm 11.29 (br. s., 1 H), 8.41 (d, J=1.76 Hz, 1 H), 7.73 (d, J=1.76 Hz, 1 H), 2.75 (s, 3 H)

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,156072-84-3, its application will become more common.

Reference:
Patent; AMGEN INC.; MINATTI, Ana Elena; LOW, Jonathan, D.; ALLEN, Jennifer, R.; AMEGADZIE, Albert; BROWN, James; FROHN, Michael, J.; GUZMAN-PEREZ, Angel; HARRINGTON, Paul, E.; LOPEZ, Patricia; MA, Vu Van; NISHIMURA, Nobuko; QIAN, Wenyuan; RUMFELT, Shannon; RZASA, Robert, M.; SHAM, Kelvin; SMITH, Adrian, L.; WHITE, Ryan; XUE, Qiufen; WO2014/138484; (2014); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Analyzing the synthesis route of 5-Chloro-2-cyano-3-methylpyridine

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,156072-84-3, its application will become more common.

Electric Literature of 156072-84-3 ,Some common heterocyclic compound, 156072-84-3, molecular formula is C7H5ClN2, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

To a solution of 5-chloro-3-methylpicolinonitrile (24.0 g, 157 mmol) in EtOH (100 mL) was added NaOH (110 mL of 5 N solution, 550 mmol). The resulting mixture was refluxed at 90 C. for 18 h. After cooling to RT, the reaction mixture was concentrated. The residue was diluted with water and the pH of the solution was adjusted to 4 by addition of 5 N HCl. The solid that precipitated was filtered and set aside. The filtrate was extracted with EtOAc (2×). The aqueous layer was again acidified with 5 N HCl to pH 4 and extracted with EtOAc (2×). The EtOAc extracts were combined, dried, and concentrated. The solid obtained from all the workup steps were combined and dried in a high vac oven at 40 C. for 12 h to give 5-chloro-3-methylpicolinic acid (268) (24.1 g, 140 mmol, 89% yield). LC/MS (ESI+) m/z=172.0 (M+H)+. 1H NMR (400 MHz, CHLOROFORM-d) delta ppm 11.29 (br. s., 1H), 8.41 (d, J=1.76 Hz, 1H), 7.73 (d, J=1.76 Hz, 1H), 2.75 (s, 3H).

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,156072-84-3, its application will become more common.

Reference:
Patent; LEWIS, Richard T.; ALLEN, Jennifer R.; BROWN, James; GUZMAN-PEREZ, Angel; HUA, Zihao; JUDD, Ted; LIU, Qingyian; OLIVIERI, Philip R.; ROMERO, Karina; SCHENKEL, Laurie; STELLWAGEN, John; WHITE, Ryan; US2015/38497; (2015); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Extended knowledge of 5-Chloro-2-cyano-3-methylpyridine

At the same time, in my other blogs, there are other synthetic methods of this type of compound,156072-84-3, 5-Chloro-2-cyano-3-methylpyridine, and friends who are interested can also refer to it.

With the rapid development and complex challenges of chemical substances, the synthesis of new drugs is usually one of the most effective ways to increase yield.156072-84-3, name is 5-Chloro-2-cyano-3-methylpyridine, molecular formula is C7H5ClN2, molecular weight is 152.58, as common compound, the synthetic route is as follows.COA of Formula: C7H5ClN2

A mixture of 2-bromo-5-chloro-3-methylpyridine (45 g, 218 mmol), zinc cyanide (8.30 mL, 131 mmol), tris(dibenzylideneacetone) dipalladium (0) (4.99 g, 5.45 mmol), and 1 ,1?-bis(diphenylphosphino)ferrocene (6.04 g, 10.90 mmol) in dimethylacetamide (40 mL) was heated to 110 C for 4 h. The reaction mixture was cooled to RT, diluted with water and extracted with EtOAc. The organic phase obtained was concentrated under reduced pressure and residue purified by chromatography on silica gel using ISCO eluting with 0-60% EtOAc/hexanes to afford 5-chloro-3-methylpicolinonitrile (25.4 g, 166 mmol, 76 % yield). LC/MS (ESI+) m/z = 153.1 (M+H) . To a solution of 5-chloro-3-methylpicolinonitrile (24.0 g, 157 mmol) in EtOH (100 mL) was added NaOH (110 mL of 5 N solution, 550 mmol). The resulting mixture was refluxed at 90 C for 18 h. After cooling to RT, the reaction mixture was concentrated. The residue was diluted with water and the pH of the solution was adjusted to 4 by addition of 5 N HCl. The solid that precipitated was filtered and set aside. The filtrate was extracted with EtOAc (2 x). The aqueous layer was again acidified with 5 N HCl to pH 4 and extracted with EtOAc (2 x). The EtOAc extracts were combined, dried, and concentrated. The solid obtained from all the workup steps were combined and dried in a vacuum oven at 40 C for 12 h to give 5-chloro-3-methylpicolinic acid (268) (24.1 g, 140 mmol, 89% yield). LC/MS (ESI+) m/z = 172.0 (M+H) +. 1H NMR (400 MHz, CHLOROFORM-d) delta ppm 11.29 (br. s., 1 H), 8.41 (d, J=1.76 Hz, 1 H), 7.73 (d, J=1.76 Hz, 1 H), 2.75 (s, 3 H).

At the same time, in my other blogs, there are other synthetic methods of this type of compound,156072-84-3, 5-Chloro-2-cyano-3-methylpyridine, and friends who are interested can also refer to it.

Reference:
Patent; AMGEN INC.; ALLEN, Jennifer R.; AMEGADZIE, Albert; BOURBEAU, Matthew P.; BROWN, James A.; CHEN, Jian J.; CHENG, Yuan; FROHN, Michael J.; GUZMAN-PEREZ, Angel; HARRINGTON, Paul E.; LIU, Longbin; LIU, Qingyian; LOW, Jonathan D.; MA, Vu Van; MANNING, James; MINATTI, Ana Elena; NGUYEN, Thomas T.; NISHMURA, Nobuko; NORMAN, Mark H.; PETTUS, Liping H.; PICKRELL, Alexander J.; QIAN, Wenyuan; RUMFELT, Shannon; RZASA, Robert M.; SIEGMUND, Aaron C.; STEC, Markian M.; WHITE, Ryan; XUE, Qiufen; (759 pag.)WO2016/22724; (2016); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Some scientific research about 156072-84-3

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,156072-84-3, its application will become more common.

Application of 156072-84-3, In the chemical reaction process,reaction time,type of solvent,can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.An updated downstream synthesis route of 156072-84-3 as follows.

(5-chloro-3-methylpyridin-2-yl)methanamine5-chloro-3-methylpyridine-2-carbonitrile (0.50 g; 3.28 mmol; 1.00 eq.) was dissolved in 7M ammonia/methanol (16 ml) and ethanol (16 ml) with Raney Ni which had been rinsed with ethanol 3×. The reaction was charged with H2 and stirred vigorously. After 21 h, the reaction was filtered through Celite, evaporated to a reddish-blue residue of (5-chloro-3-methylpyridin-2-yl)methanamine which was carried on without further purification.

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,156072-84-3, its application will become more common.

Reference:
Patent; Global Blood Therapeutics, Inc.; Li, Zhe; Xu, Qing; Yu, Chul; Yee, Calvin; Gwaltney,, II, Stephen L.; Metcalf, Brian W.; Richards, Steven; Lardy, Matthew A.; Setti, Lina; Sham, Hing; US2015/315198; (2015); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Extended knowledge of 5-Chloro-2-cyano-3-methylpyridine

At the same time, in my other blogs, there are other synthetic methods of this type of compound,156072-84-3, 5-Chloro-2-cyano-3-methylpyridine, and friends who are interested can also refer to it.

With the rapid development and complex challenges of chemical substances, the synthesis of new drugs is usually one of the most effective ways to increase yield.156072-84-3, name is 5-Chloro-2-cyano-3-methylpyridine, molecular formula is C7H5ClN2, molecular weight is 152.58, as common compound, the synthetic route is as follows.COA of Formula: C7H5ClN2

A mixture of 2-bromo-5-chloro-3-methylpyridine (45 g, 218 mmol), zinc cyanide (8.30 mL, 131 mmol), tris(dibenzylideneacetone) dipalladium (0) (4.99 g, 5.45 mmol), and 1 ,1?-bis(diphenylphosphino)ferrocene (6.04 g, 10.90 mmol) in dimethylacetamide (40 mL) was heated to 110 C for 4 h. The reaction mixture was cooled to RT, diluted with water and extracted with EtOAc. The organic phase obtained was concentrated under reduced pressure and residue purified by chromatography on silica gel using ISCO eluting with 0-60% EtOAc/hexanes to afford 5-chloro-3-methylpicolinonitrile (25.4 g, 166 mmol, 76 % yield). LC/MS (ESI+) m/z = 153.1 (M+H) . To a solution of 5-chloro-3-methylpicolinonitrile (24.0 g, 157 mmol) in EtOH (100 mL) was added NaOH (110 mL of 5 N solution, 550 mmol). The resulting mixture was refluxed at 90 C for 18 h. After cooling to RT, the reaction mixture was concentrated. The residue was diluted with water and the pH of the solution was adjusted to 4 by addition of 5 N HCl. The solid that precipitated was filtered and set aside. The filtrate was extracted with EtOAc (2 x). The aqueous layer was again acidified with 5 N HCl to pH 4 and extracted with EtOAc (2 x). The EtOAc extracts were combined, dried, and concentrated. The solid obtained from all the workup steps were combined and dried in a vacuum oven at 40 C for 12 h to give 5-chloro-3-methylpicolinic acid (268) (24.1 g, 140 mmol, 89% yield). LC/MS (ESI+) m/z = 172.0 (M+H) +. 1H NMR (400 MHz, CHLOROFORM-d) delta ppm 11.29 (br. s., 1 H), 8.41 (d, J=1.76 Hz, 1 H), 7.73 (d, J=1.76 Hz, 1 H), 2.75 (s, 3 H).

At the same time, in my other blogs, there are other synthetic methods of this type of compound,156072-84-3, 5-Chloro-2-cyano-3-methylpyridine, and friends who are interested can also refer to it.

Reference:
Patent; AMGEN INC.; ALLEN, Jennifer R.; AMEGADZIE, Albert; BOURBEAU, Matthew P.; BROWN, James A.; CHEN, Jian J.; CHENG, Yuan; FROHN, Michael J.; GUZMAN-PEREZ, Angel; HARRINGTON, Paul E.; LIU, Longbin; LIU, Qingyian; LOW, Jonathan D.; MA, Vu Van; MANNING, James; MINATTI, Ana Elena; NGUYEN, Thomas T.; NISHMURA, Nobuko; NORMAN, Mark H.; PETTUS, Liping H.; PICKRELL, Alexander J.; QIAN, Wenyuan; RUMFELT, Shannon; RZASA, Robert M.; SIEGMUND, Aaron C.; STEC, Markian M.; WHITE, Ryan; XUE, Qiufen; (759 pag.)WO2016/22724; (2016); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Some scientific research about 156072-84-3

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,156072-84-3, its application will become more common.

Application of 156072-84-3, In the chemical reaction process,reaction time,type of solvent,can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.An updated downstream synthesis route of 156072-84-3 as follows.

(5-chloro-3-methylpyridin-2-yl)methanamine5-chloro-3-methylpyridine-2-carbonitrile (0.50 g; 3.28 mmol; 1.00 eq.) was dissolved in 7M ammonia/methanol (16 ml) and ethanol (16 ml) with Raney Ni which had been rinsed with ethanol 3×. The reaction was charged with H2 and stirred vigorously. After 21 h, the reaction was filtered through Celite, evaporated to a reddish-blue residue of (5-chloro-3-methylpyridin-2-yl)methanamine which was carried on without further purification.

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,156072-84-3, its application will become more common.

Reference:
Patent; Global Blood Therapeutics, Inc.; Li, Zhe; Xu, Qing; Yu, Chul; Yee, Calvin; Gwaltney,, II, Stephen L.; Metcalf, Brian W.; Richards, Steven; Lardy, Matthew A.; Setti, Lina; Sham, Hing; US2015/315198; (2015); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Analyzing the synthesis route of 5-Chloro-2-cyano-3-methylpyridine

According to the analysis of related databases, 156072-84-3, the application of this compound in the production field has become more and more popular.

Electric Literature of 156072-84-3, Adding some certain compound to certain chemical reactions, such as: 156072-84-3, name is 5-Chloro-2-cyano-3-methylpyridine,molecular formula is C7H5ClN2, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 156072-84-3.

Step 2: Synthesis of 5-chloro-3-methylpicolinic acid To a solution of 5-chloro-3-methylpicolinonitrile (24.0 g, 157 mmol) in EtOH (100 mL) was added NaOH 5.0N (110 ml, 550 mmol). The resulting mixture was refluxed at 90 C. for 18 h. After cooling to RT, the reaction mixture was concentrated, diluted with water and the pH of the solution was adjusted to 4 by addition of 5N HCl. The solid that precipitated was filtered and set aside. The filtrate was extracted with EtOAc (2*). The aqueous layer was again acidified with 5N HCl to pH 4 and extracted with EtOAc (2*). The EtOAc extracts were combined, dried, and concentrated. The solid obtained from all the workup steps were combined and dried in a high vac oven at 40 C. for 12 h to give the title compound 5-chloro-3-methylpicolinic acid (24.1 g, 140 mmol, 89% yield). LC/MS (ESI+) m/z=172.0 (M+H); 1H NMR (400 MHz, CHLOROFORM-d) delta ppm 11.29 (br. s., 1H), 8.41 (d, J=1.76 Hz, 1H), 7.73 (d, J=1.76 Hz, 1H), 2.75 (s, 3H).

According to the analysis of related databases, 156072-84-3, the application of this compound in the production field has become more and more popular.

Reference:
Patent; MINATTI, Ana Elena; LOW, Jonathan D.; ALLEN, Jennifer R.; CHEN, Jian; CHEN, Ning; CHENG, Yuan; JUDD, Ted; LIU, Qingyian; LOPEZ, Patricia; QIAN, Wenyuan; RUMFELT, Shannon; RZASA, Robert M.; TAMAYO, Nuria A.; XUE, Qiufen; YANG, Bryant; ZHONG, Wenge; US2014/249104; (2014); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

New learning discoveries about 5-Chloro-2-cyano-3-methylpyridine

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 156072-84-3, 5-Chloro-2-cyano-3-methylpyridine.

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps,and cheap raw materials. 156072-84-3, name is 5-Chloro-2-cyano-3-methylpyridine. A new synthetic method of this compound is introduced below., Product Details of 156072-84-3

To a solution of 5-chloro-3-methylpicolinonitrile (24.0 g, 157 mmol) in EtOH (100 mL) was added NaOH 5. ON (110 ml, 550 mmol). The resulting mixture was refluxed at 90 C for 18 h. After cooling to RT, the reaction mixture was conentrated, diluted with water and the pH of the solution was adjusted to 4 by addition of 5N HC1. The solid that precipitated was filtered and set aside. The filtrate was extracted with EtOAc (2X). The aqueous layer was again acidified with 5N HC1 to pH 4 and extracted with EtOAc (2X). The EtOAc extracts were combined, dried, and concentrated. The solid obtained from all the workup steps were combined and dried in a high vac oven at 40 C for 12 h to give the title compound 5-chloro-3-methylpicolinic acid (24.1 g, 140 mmol, 89 % yield). LC/MS (ESf ) m/z = 172.0 (M+H)+; H NMR (400 MHz, CHLOROFORM -J) delta ppm 11.29 (br. s., 1 H), 8.41 (d, J=1.76 Hz, 1 H), 7.73 (d, J=1.76 Hz, 1 H), 2.75 (s, 3 H)

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 156072-84-3, 5-Chloro-2-cyano-3-methylpyridine.

Reference:
Patent; AMGEN INC.; MINATTI, Ana Elena; LOW, Jonathan, D.; ALLEN, Jennifer, R.; AMEGADZIE, Albert; BROWN, James; FROHN, Michael, J.; GUZMAN-PEREZ, Angel; HARRINGTON, Paul, E.; LOPEZ, Patricia; MA, Vu Van; NISHIMURA, Nobuko; QIAN, Wenyuan; RUMFELT, Shannon; RZASA, Robert, M.; SHAM, Kelvin; SMITH, Adrian, L.; WHITE, Ryan; XUE, Qiufen; WO2014/138484; (2014); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Extended knowledge of 156072-84-3

At the same time, in my other blogs, there are other synthetic methods of this type of compound,156072-84-3, 5-Chloro-2-cyano-3-methylpyridine, and friends who are interested can also refer to it.

With the rapid development and complex challenges of chemical substances, the synthesis of new drugs is usually one of the most effective ways to increase yield.156072-84-3, name is 5-Chloro-2-cyano-3-methylpyridine, molecular formula is C7H5ClN2, molecular weight is 152.58, as common compound, the synthetic route is as follows.Computed Properties of C7H5ClN2

A mixture of 2-bromo-5-chloro-3-methylpyridine (45 g, 218 mmol), zinc cyanide (8.30 mL, 131 mmol), tris(dibenzylideneacetone) dipalladium (0) (4.99 g, 5.45 mmol), and 1 ,1?-bis(diphenylphosphino)ferrocene (6.04 g, 10.90 mmol) in dimethylacetamide (40 mL) was heated to 110 C for 4 h. The reaction mixture was cooled to RT, diluted with water and extracted with EtOAc. The organic phase obtained was concentrated under reduced pressure and residue purified by chromatography on silica gel using ISCO eluting with 0-60% EtOAc/hexanes to afford 5-chloro-3-methylpicolinonitrile (25.4 g, 166 mmol, 76 % yield). LC/MS (ESI+) m/z = 153.1 (M+H) . To a solution of 5-chloro-3-methylpicolinonitrile (24.0 g, 157 mmol) in EtOH (100 mL) was added NaOH (110 mL of 5 N solution, 550 mmol). The resulting mixture was refluxed at 90 C for 18 h. After cooling to RT, the reaction mixture was concentrated. The residue was diluted with water and the pH of the solution was adjusted to 4 by addition of 5 N HCl. The solid that precipitated was filtered and set aside. The filtrate was extracted with EtOAc (2 x). The aqueous layer was again acidified with 5 N HCl to pH 4 and extracted with EtOAc (2 x). The EtOAc extracts were combined, dried, and concentrated. The solid obtained from all the workup steps were combined and dried in a vacuum oven at 40 C for 12 h to give 5-chloro-3-methylpicolinic acid (268) (24.1 g, 140 mmol, 89% yield). LC/MS (ESI+) m/z = 172.0 (M+H) +. 1H NMR (400 MHz, CHLOROFORM-d) delta ppm 11.29 (br. s., 1 H), 8.41 (d, J=1.76 Hz, 1 H), 7.73 (d, J=1.76 Hz, 1 H), 2.75 (s, 3 H).

At the same time, in my other blogs, there are other synthetic methods of this type of compound,156072-84-3, 5-Chloro-2-cyano-3-methylpyridine, and friends who are interested can also refer to it.

Reference:
Patent; AMGEN INC.; ALLEN, Jennifer R.; AMEGADZIE, Albert; BOURBEAU, Matthew P.; BROWN, James A.; CHEN, Jian J.; CHENG, Yuan; FROHN, Michael J.; GUZMAN-PEREZ, Angel; HARRINGTON, Paul E.; LIU, Longbin; LIU, Qingyian; LOW, Jonathan D.; MA, Vu Van; MANNING, James; MINATTI, Ana Elena; NGUYEN, Thomas T.; NISHMURA, Nobuko; NORMAN, Mark H.; PETTUS, Liping H.; PICKRELL, Alexander J.; QIAN, Wenyuan; RUMFELT, Shannon; RZASA, Robert M.; SIEGMUND, Aaron C.; STEC, Markian M.; WHITE, Ryan; XUE, Qiufen; (759 pag.)WO2016/22724; (2016); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem