A new synthetic route of 166266-19-9

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 166266-19-9, 5-Iodo-3-methylpyridin-2-amine, other downstream synthetic routes, hurry up and to see.

Synthetic Route of 166266-19-9, Adding some certain compound to certain chemical reactions, such as: 166266-19-9, name is 5-Iodo-3-methylpyridin-2-amine,molecular formula is C6H7IN2, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 166266-19-9.

Production Example 4: Production of 2-amino-3-methyl-6-pentafluoroethylpyridine (Compound No. IV-1) To 20 ml of dimethyl sulfoxide were added 2.34 g (0.01 mol) of 2-amino-5-iodo-3-methylpyridine, 2.5 g of powdered metallic copper and 3.7 g (0.015 mol) of iodopentafluorethane. The mixture was kept at 110C and vigorously stirred for 6 hours. After cooling the reaction mixture to room temperature, the mixture was poured into 500 ml of ice water and thoroughly stirred. The insoluble matter was filtered off, and the objective product was extracted from the filtrate with 300 ml of ethyl acetate. The extract solution was washedwith water, dried on anhydrous sodium sulfate, and concentrated under reduced pressure. Purification of the residue by column chromatography using 3/7 mixture of ethyl acetate and hexane as an eluent gave 1.1 g of the objective product (yield 20%). 1H-NMR [delta (CDCl3)]: 2.17 (s,3H), 4.82 (br,2H), 7.42 (d,1H), 8.16 (s,1H),

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 166266-19-9, 5-Iodo-3-methylpyridin-2-amine, other downstream synthetic routes, hurry up and to see.

Reference:
Patent; Nihon Nohyaku Co., Ltd.; EP1193254; (2002); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Analyzing the synthesis route of 166266-19-9

The synthetic route of 166266-19-9 has been constantly updated, and we look forward to future research findings.

Synthetic Route of 166266-19-9 , The common heterocyclic compound, 166266-19-9, name is 5-Iodo-3-methylpyridin-2-amine, molecular formula is C6H7IN2, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

Sodium nitrite (0.708 g, 10.25 mmol) was added to a mixture of 5-iodo-3-methyl-pyridin-2- ylamine (2 g, 8.55 mmol) and H2504 (12 mL) at 0 C. The reactiom mixture was stirred 15 mm at 60C, allowed to cool down, and poured onto crushed ice. Boric acid (1.057 g, 17.09 mmol) was added and the solution was quickly heated to 100 C. The reaction mixture was cooled down and neutralized with a saturated aq. NH4OH solution. The suspension was filtered toafford the crude title product (1.67 g, 7.11 mmol, 83% yield) as a brown solid. tR: 2.85 mm (H PLC 1); tR: 0.62 mm (LC-MS 2); ESl-MS: 236 [M+H] (LC-MS 2).

The synthetic route of 166266-19-9 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; NOVARTIS AG; BLANK, Jutta; BORDAS, Vincent; COTESTA, Simona; GUAGNANO, Vito; RUEEGER, Heinrich; VAUPEL, Andrea; WO2014/191896; (2014); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Analyzing the synthesis route of 166266-19-9

The synthetic route of 166266-19-9 has been constantly updated, and we look forward to future research findings.

Synthetic Route of 166266-19-9 , The common heterocyclic compound, 166266-19-9, name is 5-Iodo-3-methylpyridin-2-amine, molecular formula is C6H7IN2, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

Sodium nitrite (0.708 g, 10.25 mmol) was added to a mixture of 5-iodo-3-methyl-pyridin-2- ylamine (2 g, 8.55 mmol) and H2504 (12 mL) at 0 C. The reactiom mixture was stirred 15 mm at 60C, allowed to cool down, and poured onto crushed ice. Boric acid (1.057 g, 17.09 mmol) was added and the solution was quickly heated to 100 C. The reaction mixture was cooled down and neutralized with a saturated aq. NH4OH solution. The suspension was filtered toafford the crude title product (1.67 g, 7.11 mmol, 83% yield) as a brown solid. tR: 2.85 mm (H PLC 1); tR: 0.62 mm (LC-MS 2); ESl-MS: 236 [M+H] (LC-MS 2).

The synthetic route of 166266-19-9 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; NOVARTIS AG; BLANK, Jutta; BORDAS, Vincent; COTESTA, Simona; GUAGNANO, Vito; RUEEGER, Heinrich; VAUPEL, Andrea; WO2014/191896; (2014); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

The origin of a common compound about 166266-19-9

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 166266-19-9, 5-Iodo-3-methylpyridin-2-amine, other downstream synthetic routes, hurry up and to see.

Electric Literature of 166266-19-9, Adding some certain compound to certain chemical reactions, such as: 166266-19-9, name is 5-Iodo-3-methylpyridin-2-amine,molecular formula is C6H7IN2, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 166266-19-9.

To a cooled (0 C.) solution of ethyl (1E)-N-(2,4,6-trimethylphenyl)sulfonyloxyethanimidate (0.732 g, 2.56 mmol) in dioxane (3.2 mL) was added 70% perchloric acid (2.75 mL, 32.2 mmol) dropwise. Following the addition, the temperature was maintained at 0 C. for 10 minutes and then ice-cold water (13 mL) was added at once. The resulting precipitate was collected by vacuum filtration and washed with water (caution: this compound has been reported to be potentially explosive when dry). The white solid was immediately dissolved in DCM (5.5 mL), dried over Na2SO4, and filtered. The filtrate was then added dropwise to a cooled (0 C.) solution of 5-iodo-3-methylpyridin-2-amine (0.3 g, 1.28 mmol) in DCM (11 mL). The reaction was warmed to room temperature and stirred for 3.5 h. Diethyl ether was added and the resulting white solid was collected by vacuum filtration to provide the title compound (517 mg, 89%). 1H NMR (500 MHz, DMSO-d6) delta 8.28 (br s, 2H), 8.22 (d, J=2.1 Hz, 1H), 7.97 (s, 1H), 6.81 (br s, 2H), 6.73 (s, 2H), 2.49 (s, 6H), 2.19 (s, 3H), 2.17 (s, 3H).

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 166266-19-9, 5-Iodo-3-methylpyridin-2-amine, other downstream synthetic routes, hurry up and to see.

Reference:
Patent; Janssen Pharmaceutica NV; Ameriks, Michael K.; Gyuris, Mario; Laforteza, Brian Ngo; Lebold, Terry Patrick; Meyer, Stephen Todd; Ravula, Suchitra; Savall, Brad M.; Shireman, Brock T.; Wade, Warren Stanfield; Gerencser, Janos; (87 pag.)US2018/111933; (2018); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

The origin of a common compound about 166266-19-9

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 166266-19-9, 5-Iodo-3-methylpyridin-2-amine, other downstream synthetic routes, hurry up and to see.

Electric Literature of 166266-19-9, Adding some certain compound to certain chemical reactions, such as: 166266-19-9, name is 5-Iodo-3-methylpyridin-2-amine,molecular formula is C6H7IN2, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 166266-19-9.

To a cooled (0 C.) solution of ethyl (1E)-N-(2,4,6-trimethylphenyl)sulfonyloxyethanimidate (0.732 g, 2.56 mmol) in dioxane (3.2 mL) was added 70% perchloric acid (2.75 mL, 32.2 mmol) dropwise. Following the addition, the temperature was maintained at 0 C. for 10 minutes and then ice-cold water (13 mL) was added at once. The resulting precipitate was collected by vacuum filtration and washed with water (caution: this compound has been reported to be potentially explosive when dry). The white solid was immediately dissolved in DCM (5.5 mL), dried over Na2SO4, and filtered. The filtrate was then added dropwise to a cooled (0 C.) solution of 5-iodo-3-methylpyridin-2-amine (0.3 g, 1.28 mmol) in DCM (11 mL). The reaction was warmed to room temperature and stirred for 3.5 h. Diethyl ether was added and the resulting white solid was collected by vacuum filtration to provide the title compound (517 mg, 89%). 1H NMR (500 MHz, DMSO-d6) delta 8.28 (br s, 2H), 8.22 (d, J=2.1 Hz, 1H), 7.97 (s, 1H), 6.81 (br s, 2H), 6.73 (s, 2H), 2.49 (s, 6H), 2.19 (s, 3H), 2.17 (s, 3H).

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 166266-19-9, 5-Iodo-3-methylpyridin-2-amine, other downstream synthetic routes, hurry up and to see.

Reference:
Patent; Janssen Pharmaceutica NV; Ameriks, Michael K.; Gyuris, Mario; Laforteza, Brian Ngo; Lebold, Terry Patrick; Meyer, Stephen Todd; Ravula, Suchitra; Savall, Brad M.; Shireman, Brock T.; Wade, Warren Stanfield; Gerencser, Janos; (87 pag.)US2018/111933; (2018); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

The origin of a common compound about 166266-19-9

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 166266-19-9, 5-Iodo-3-methylpyridin-2-amine, other downstream synthetic routes, hurry up and to see.

Electric Literature of 166266-19-9, Adding some certain compound to certain chemical reactions, such as: 166266-19-9, name is 5-Iodo-3-methylpyridin-2-amine,molecular formula is C6H7IN2, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 166266-19-9.

To a cooled (0 C.) solution of ethyl (1E)-N-(2,4,6-trimethylphenyl)sulfonyloxyethanimidate (0.732 g, 2.56 mmol) in dioxane (3.2 mL) was added 70% perchloric acid (2.75 mL, 32.2 mmol) dropwise. Following the addition, the temperature was maintained at 0 C. for 10 minutes and then ice-cold water (13 mL) was added at once. The resulting precipitate was collected by vacuum filtration and washed with water (caution: this compound has been reported to be potentially explosive when dry). The white solid was immediately dissolved in DCM (5.5 mL), dried over Na2SO4, and filtered. The filtrate was then added dropwise to a cooled (0 C.) solution of 5-iodo-3-methylpyridin-2-amine (0.3 g, 1.28 mmol) in DCM (11 mL). The reaction was warmed to room temperature and stirred for 3.5 h. Diethyl ether was added and the resulting white solid was collected by vacuum filtration to provide the title compound (517 mg, 89%). 1H NMR (500 MHz, DMSO-d6) delta 8.28 (br s, 2H), 8.22 (d, J=2.1 Hz, 1H), 7.97 (s, 1H), 6.81 (br s, 2H), 6.73 (s, 2H), 2.49 (s, 6H), 2.19 (s, 3H), 2.17 (s, 3H).

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 166266-19-9, 5-Iodo-3-methylpyridin-2-amine, other downstream synthetic routes, hurry up and to see.

Reference:
Patent; Janssen Pharmaceutica NV; Ameriks, Michael K.; Gyuris, Mario; Laforteza, Brian Ngo; Lebold, Terry Patrick; Meyer, Stephen Todd; Ravula, Suchitra; Savall, Brad M.; Shireman, Brock T.; Wade, Warren Stanfield; Gerencser, Janos; (87 pag.)US2018/111933; (2018); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

The important role of 166266-19-9

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,166266-19-9, its application will become more common.

Synthetic Route of 166266-19-9 ,Some common heterocyclic compound, 166266-19-9, molecular formula is C6H7IN2, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

In a 50 mL resealable tube, a solution of 4-bromothiophenol (3.2 g, 17 mmol, Sigma- Aldrich, India) and 5-iodo-3-methyl-2-pyridinamine (2 g , 8.5 mmol) in DMSO (20 mL) was degassed by purging with argon gas at room temperature for 10 min. Potassium carbonate (3.53 g, 25.6 mmol) and cooper iodide (0.2 g ,1.1 mmol) were added sequentially to the above reaction mixture at room temperature under argon atmosphere The reaction tube was sealed under argon atmosphere and reaction mixture was heated at 150 C for 18 h. The reaction mixture was cooled to room temperature and filtered through a Celite (diatomaceous earth) pad. The filtrate was diluted with cold water (200 mL) and ethyl acetate (100 mL). The EtOAc layer was separated, washed with water, brine, dried over anhydrous Na2S04 and concentrated under reduced pressure. The residue obtained was purified by silica gel (60 to 120 mesh) column chromatography (eluent, 20% EtOAc-hexanes) to give 5-((4- bromophenyl)sulfanyl)-3-methyl-2-pyridinamine (2.7 g) as a white solid.

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,166266-19-9, its application will become more common.

Reference:
Patent; AMGEN INC.; ASHTON, Kate; BOURBEAU, Matthew, Paul; HONG, Fang-Tsao; LIU, Longbin; NISHIMURA, Nobuko; NORMAN, Mark, H.; POON, Steve, F.; STEC, Markian, M.; ST. JEAN, David, J., JR; TAMAYO, Nuria, A.; YANG, Kevin, C.; WO2013/123444; (2013); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

The important role of 166266-19-9

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,166266-19-9, its application will become more common.

Synthetic Route of 166266-19-9 ,Some common heterocyclic compound, 166266-19-9, molecular formula is C6H7IN2, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

In a 50 mL resealable tube, a solution of 4-bromothiophenol (3.2 g, 17 mmol, Sigma- Aldrich, India) and 5-iodo-3-methyl-2-pyridinamine (2 g , 8.5 mmol) in DMSO (20 mL) was degassed by purging with argon gas at room temperature for 10 min. Potassium carbonate (3.53 g, 25.6 mmol) and cooper iodide (0.2 g ,1.1 mmol) were added sequentially to the above reaction mixture at room temperature under argon atmosphere The reaction tube was sealed under argon atmosphere and reaction mixture was heated at 150 C for 18 h. The reaction mixture was cooled to room temperature and filtered through a Celite (diatomaceous earth) pad. The filtrate was diluted with cold water (200 mL) and ethyl acetate (100 mL). The EtOAc layer was separated, washed with water, brine, dried over anhydrous Na2S04 and concentrated under reduced pressure. The residue obtained was purified by silica gel (60 to 120 mesh) column chromatography (eluent, 20% EtOAc-hexanes) to give 5-((4- bromophenyl)sulfanyl)-3-methyl-2-pyridinamine (2.7 g) as a white solid.

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,166266-19-9, its application will become more common.

Reference:
Patent; AMGEN INC.; ASHTON, Kate; BOURBEAU, Matthew, Paul; HONG, Fang-Tsao; LIU, Longbin; NISHIMURA, Nobuko; NORMAN, Mark, H.; POON, Steve, F.; STEC, Markian, M.; ST. JEAN, David, J., JR; TAMAYO, Nuria, A.; YANG, Kevin, C.; WO2013/123444; (2013); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Simple exploration of 5-Iodo-3-methylpyridin-2-amine

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 166266-19-9, 5-Iodo-3-methylpyridin-2-amine.

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps,and cheap raw materials. 166266-19-9, name is 5-Iodo-3-methylpyridin-2-amine. A new synthetic method of this compound is introduced below., COA of Formula: C6H7IN2

Step 23.1: 5-iodo-3-methylpyridin-2-ol Sodium nitrite (0.708 g, 10.25 mmol) was added to a mixture of 5-iodo-3-methyl-pyridin-2-ylamine (2 g, 8.55 mmol) and H2SO4 (12 mL) at 0 C. The reaction mixture was stirred 15 min at 60 C., allowed to cool down, and poured onto crushed ice. Boric acid (1.057 g, 17.09 mmol) was added and the solution was quickly heated to 100 C. The reaction mixture was cooled down and neutralized with a saturated aq. NH4OH solution. The suspension was filtered to afford the crude title product (1.67 g, 7.11 mmol, 83% yield) as a brown solid. tR: 2.85 min (HPLC 1); tR: 0.62 min (LC-MS 2); ESI-MS: 236 [M+H]+ (LC-MS 2).

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 166266-19-9, 5-Iodo-3-methylpyridin-2-amine.

Reference:
Patent; NOVARTIS AG; BLANK, Jutta; BORDAS, Vincent; COTESTA, Simona; GUAGNANO, Vito; RUEEGER, Heinrich; VAUPEL, Andrea; US2014/349990; (2014); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Extended knowledge of 5-Iodo-3-methylpyridin-2-amine

With the rapid development of chemical substances, we look forward to future research findings about 166266-19-9.

The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 166266-19-9, name is 5-Iodo-3-methylpyridin-2-amine. This compound has unique chemical properties. The synthetic route is as follows. COA of Formula: C6H7IN2

Example 2 Preparation of 2-chloro-3-methyl-5-iodopyridine At -10 C., 21.3 g of chlorine gas were introduced into a suspension of 146 g of 10% strength by weight hydrochloric acid and 23.4 g of 2-amino-3-methyl-5-iodopyridine [J. Org. Chem. (1995), p. 5356]. At about -50 C., a solution of 48.3 g of sodium nitrite in 120 ml of water was subsequently added dropwise. After about 2 hours of stirring at 0 C., the mixture was diluted with 1 l of water and extracted with methyl tert-butyl ether (MtBE). The organic phases were washed with NaHCO3 solution and water and then dried. Distillative removal of the solvent under reduced pressure and silica gel chromatography (cyclohexane/MtBE=1:10) gave 3.6 g of the product in the form of dark crystals. 1H-NMR (CDCl3, ppm): delta=8.4 (1H); 7.9 (1H); 2.3 (3H).

With the rapid development of chemical substances, we look forward to future research findings about 166266-19-9.

Reference:
Patent; BASF Aktiengesellschaft; US6372766; (2002); B1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem