New learning discoveries about 17117-13-4

With the rapid development of chemical substances, we look forward to future research findings about 17117-13-4.

The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 17117-13-4, name is 2-Bromo-4-ethoxypyridine. This compound has unique chemical properties. The synthetic route is as follows. category: pyridine-derivatives

(2) Synthesis of 2′,6′-difluoro-4-ethoxy-2,3′-bipyridine Under an argon atmosphere, 0.81 g (4.00 mmol) of 2-bromo-4-ethoxy-pyridine, 1.02 g (6.40 mmol) of 2,6-difluoro-pyridyl-3-boronic acid, 0.0374 g (0.032 mmol) of Pd(PPh3)4 were dissolved in 30 mL of dioxane, followed by addition of 10 mL of an aqueous solution of 5 wt % K2CO3, heated to reflux, stirred for 18 h. After naturally cooled to room temperature, an appropriate amount of distilled water was added, and the solution was extracted several times with ethyl acetate, the organic phase were combined and dried over anhydrous MgSO4. After filtration, solvent was removed from the filtrate under reduced pressure to give the crude product. The crude product was purified to silica gel column chromatography using a mixture of ethyl acetate and n-hexane (v/v=1:4) as eluent to obtain 0.56 g of a colorless solid product in 59.6% yield. 1H NMR (400 MHz, CDCl3, ppm): delta 8.92 (d, 1H), 8.65 (d, 1H), 7.75 (d, 1H), 7.43 d, 1H), 6.92 (s, 1H), 4.12 (m, 2H), 1.90 (m, 3H).

With the rapid development of chemical substances, we look forward to future research findings about 17117-13-4.

Reference:
Patent; Ocean’s King Lighting Science & Technology Co., Ltd.; Zhou, Mingjie; Wang, Ping; Zhang, Juanjuan; Zhang, Zhenhua; US8859771; (2014); B2;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Extended knowledge of 17117-13-4

According to the analysis of related databases, 17117-13-4, the application of this compound in the production field has become more and more popular.

Reference of 17117-13-4, Adding some certain compound to certain chemical reactions, such as: 17117-13-4, name is 2-Bromo-4-ethoxypyridine,molecular formula is C7H8BrNO, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 17117-13-4.

Preparation 36 To a suspension of 2-bromo-4-ethoxypyridine (879 mg), 3-nitrophenylboronic acid (944 mg) and tetrakis(triphenylphosphine)-palladium (251 mg) in 1,2-dimethoxyethane (20 ml) was added 2M aqueous solution of sodium carbonate (5.66 ml). The mixture was stirred at 90 C. for 8 hours under a nitrogen atmosphere, then cooled to room temperature and diluted with ethyl acetate. The organic layer was separated, washed with water and brine and dried over sodium sulfate. The solvent was evaporated under reduced pressure. The residue was purified by column chromatography (silica gel 40 g, 25% ethyl acetate in n-hexane) to give 3-(4-ethoxypyridin-2-yl)nitrobenzene (887 mg). 1H-NMR (CDCl3): delta1.49(3H,t,J=7.0 Hz), 4.18(2H,q,J=7.0 Hz), 6.83(1H,dd,J=5.7 Hz,2.4 Hz), 7.29(1H,d,J=2.4 Hz), 7.63(1H,t,J=8.0 Hz), 8.2-8.4(2H,m), 8.54(1H,d,J=5.7 Hz), 8.81(1H,t,J=2.0 Hz)

According to the analysis of related databases, 17117-13-4, the application of this compound in the production field has become more and more popular.

Reference:
Patent; Fujisawa Pharmaceutical Co., Ltd.; US6521643; (2003); B1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Extended knowledge of 17117-13-4

According to the analysis of related databases, 17117-13-4, the application of this compound in the production field has become more and more popular.

Reference of 17117-13-4, Adding some certain compound to certain chemical reactions, such as: 17117-13-4, name is 2-Bromo-4-ethoxypyridine,molecular formula is C7H8BrNO, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 17117-13-4.

Preparation 36 To a suspension of 2-bromo-4-ethoxypyridine (879 mg), 3-nitrophenylboronic acid (944 mg) and tetrakis(triphenylphosphine)-palladium (251 mg) in 1,2-dimethoxyethane (20 ml) was added 2M aqueous solution of sodium carbonate (5.66 ml). The mixture was stirred at 90 C. for 8 hours under a nitrogen atmosphere, then cooled to room temperature and diluted with ethyl acetate. The organic layer was separated, washed with water and brine and dried over sodium sulfate. The solvent was evaporated under reduced pressure. The residue was purified by column chromatography (silica gel 40 g, 25% ethyl acetate in n-hexane) to give 3-(4-ethoxypyridin-2-yl)nitrobenzene (887 mg). 1H-NMR (CDCl3): delta1.49(3H,t,J=7.0 Hz), 4.18(2H,q,J=7.0 Hz), 6.83(1H,dd,J=5.7 Hz,2.4 Hz), 7.29(1H,d,J=2.4 Hz), 7.63(1H,t,J=8.0 Hz), 8.2-8.4(2H,m), 8.54(1H,d,J=5.7 Hz), 8.81(1H,t,J=2.0 Hz)

According to the analysis of related databases, 17117-13-4, the application of this compound in the production field has become more and more popular.

Reference:
Patent; Fujisawa Pharmaceutical Co., Ltd.; US6521643; (2003); B1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Application of 17117-13-4

The synthetic route of 17117-13-4 has been constantly updated, and we look forward to future research findings.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 17117-13-4, name is 2-Bromo-4-ethoxypyridine, the common compound, a new synthetic route is introduced below. Computed Properties of C7H8BrNO

7.05.01. 2-(3,5-Bis-(4-fluoro-phenyl)-(1,2,4)triazol-1-yl)-1-(4-(4-ethoxy-pyridin-2-yl)-piperazin-1-yl)-ethanone 17 mg BINAP and 24 mg tris-(dibenzylidenacetone)palladium(0) were added to 255 mg casiumcarbonate, 65 mg 2-brom-4-ethoxy-pyridine and 100 mg 2-(3,5-Bis-(4-fluoro-phenyl)-(1,2,4)triazol-1-yl)-1-piperazin-1-yl-ethanone in 10 mL toluole under nitrogen atmosphere. The reaction was refluxed for 4 days. The mixture was filtered and the filtrate was evaporated. The residue was purified by HPLC. Rt: 1.22 min (method B), (M+H)+: 505 By using the same synthesis strategy as for 2-(3,5-Bis-(4-fluoro-phenyl)-(1,2,4)triazol-1-yl)-1-(4-(4-ethoxy-pyridin-2-yl)-piperazin-1-yl)-ethanone the following compounds was obtained:

The synthetic route of 17117-13-4 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; Boehringer Ingelheim International GmbH; GRAUERT, Matthias; BISCHOFF, Daniel; DAHMANN, Georg; KUELZER, Raimund; RUDOLF, Klaus; US2013/184248; (2013); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem