The origin of a common compound about 2-Fluoro-5-iodopyridine

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,171197-80-1, its application will become more common.

Adding a certain compound to certain chemical reactions, such as: 171197-80-1, 2-Fluoro-5-iodopyridine, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, 171197-80-1, blongs to pyridine-derivatives compound. COA of Formula: C5H3FIN

Preparation 145-Cyclopropyl-2-fluoro-pyridineCombine 2-fluoro-5-iodo-pyridine (1.12 g, 5 mmol), cyclopropylboronic acid (645 mg, 7.5 mmol), palladium acetate (56 mg, 0.25 mmol) and potassium phosphate (3.2 g, 15 mmol) in toluene/water (20: 1, 21 mL). Heat the mixture at 100 0C for 4 h. Dilute the mixture with chloroform-IPA (3:1, 100 mL). Wash the organic phase with saturated aqueous sodium chloride and water. Dry the mixture over sodium sulfate. Concentrate the solution in vacuo to a brown oil. Purify by column chromatography (20 % ethyl acetate in hexane) to afford the title compound as a pale yellow oil (430 mg, 63 %).

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,171197-80-1, its application will become more common.

Reference:
Patent; ELI LILLY AND COMPANY; WO2008/144222; (2008); A2;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

New learning discoveries about 2-Fluoro-5-iodopyridine

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,171197-80-1, its application will become more common.

Reference of 171197-80-1 ,Some common heterocyclic compound, 171197-80-1, molecular formula is C5H3FIN, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

Preparation 46; 5-Cyclopropyl-2-fluoro-pyridine; In a flask, combine 2-fluoro-5-iodo-pyridine (1.12 g, 5 mmol), cyclopropylboronic acid (645 mg, 7.5 mmol), palladium acetate (56 mg, 0.25 mmol), potassium phosphate (3.2 g, 15 mmol), and toluene-water (20: 1, 21 mL). Heat the mixture at 100 0C for 4 hours. Dilute the mixture with chloroform-isopropanol (3: 1, 100 mL). Wash the organic phase with saturated aqueous sodium chloride and water. Dry the mixture over sodium sulfate. Concentrate the solution in vacuo to a brown oil. Purify by column chromatography (20 % ethyl acetate in hexane) to afford the title compound (430 mg, 63 %) as a pale yellow oil. 1H nuMR (400 MHz-CDCl3) delta 7.99 (d, J= 3 Hz, IH), 7.39 (td, J= 3, 5 Hz, IH), 6.79 (dd, J= 3, 8 Hz, IH), 0.96-1.02 (m, 2H), 0.63-0.69 (m, 2H).

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,171197-80-1, its application will become more common.

Reference:
Patent; ELI LILLY AND COMPANY; WO2008/76705; (2008); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem