Some tips on 19235-89-3

At the same time, in my other blogs, there are other synthetic methods of this type of compound,19235-89-3, 4-Chloropyridine-2-carbonitrile, and friends who are interested can also refer to it.

Adding a certain compound to certain chemical reactions, such as: 19235-89-3, 4-Chloropyridine-2-carbonitrile, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, name: 4-Chloropyridine-2-carbonitrile, blongs to pyridine-derivatives compound. name: 4-Chloropyridine-2-carbonitrile

Potassium carbonate (9.00 g) was dried in vacuo with heating, cooled to RT under nitrogen. 4-amino-3-ntrophenol (3.355 g), 4-chloro-2-cyanopyridine (3.00 g) and DMSO (30 mL, anhydrous) were added. The system was stirred under nitrogen as it was heated to 103 C., and held at this temperature 1 hr. The reaction was then cooled to RT, poured onto ice/H2O (500 mL) the precipitate was collected, washed (H2O), dissolved (EtOAc), dried (Na2SO4), filtered and stripped to a solid. This was suspended (Et2O), collected, air-dried 4.1015 g (73.5%) a second crop was collected (0.5467 gm, 10%). M/z=257 (M+1)

At the same time, in my other blogs, there are other synthetic methods of this type of compound,19235-89-3, 4-Chloropyridine-2-carbonitrile, and friends who are interested can also refer to it.

Reference:
Patent; Amiri, Payman; Fantl, Wendy; Levine, Barry Haskell; Poon, Daniel J.; Ramurthy, Savithri; Renhowe, Paul A.; Subramanian, Sharadha; Sung, Leonard; US2004/122237; (2004); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Sources of common compounds: 19235-89-3

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 19235-89-3, 4-Chloropyridine-2-carbonitrile, other downstream synthetic routes, hurry up and to see.

Application of 19235-89-3 ,Some common heterocyclic compound, 19235-89-3, molecular formula is C6H3ClN2, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

2-Acetyl-4-chloropyridine: To a solution of 4-chloro-2-pyridinecarbonitrile (5.35 g, 38.6 mmol) in benzene (50 ml) and ether (50 ml) cooled to 0 C was added dropwise over 20 min a 2M solution of MeMgI in ether (23 ml, 46.3 mmol). After 0.5 h, the mixture was allowed to warm to ambient temperature, and stirring continued for 2 hours. The mixture was cooled to 0 C and 2M aqueous HCl (100 ml) added. Themixture was made basic with saturated aqueous sodium bicarbonate (~80 ml) and the organic layer separated and dried (MgSO4). After removal of solvent, the residue was purified by flash chromatography eluding with ethyl acetate/hexane (1:5) to afford 3.60 g (60%) of 2-acetyl-4-chloropyridine. 1H-NMR (DMSO-d6) 8.59 (1 H, d, J=5.1 Hz), 8.04 (1 H, d, J=1.8 Hz), 7.47 (1 H, dd, J=1.8, 5.1 Hz), 2.72 (3 H, s).

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 19235-89-3, 4-Chloropyridine-2-carbonitrile, other downstream synthetic routes, hurry up and to see.

Reference:
Patent; PFIZER INC.; EP1065206; (2001); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Simple exploration of 19235-89-3

The synthetic route of 19235-89-3 has been constantly updated, and we look forward to future research findings.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 19235-89-3, name is 4-Chloropyridine-2-carbonitrile, the common compound, a new synthetic route is introduced below. Formula: C6H3ClN2

[Referential Example 114]; 4-Methylthiopyridine-2-carbonitrile; Sodium thiomethoxide (1.01 g) was added to 4-chloropyridine-2-carbonitrile (2.00 g) obtained from Referential Example 113 in N,N-dimethylformamide (20 mL) at 0C, followed by stirring for 2 hours. The reaction mixture was partitioned between water and ethyl acetate. The organic layer was dried over sodium sulfate anhydrate, followed by filtration. The solvent was evaporated under reduced pressure. The residue was purified through silica gel column chromatography (hexane – ethyl acetate), to thereby give the title compound as a solid (1.96 g, 90%).1H-NMR(400MHz,CDCl3)delta: 2.53(3H,s), 7.26-7.27(1H,m), 7.45-7.46(1H,m), 8.45-8.46(1H,m). MS(EI)m/z: 150(M+) .

The synthetic route of 19235-89-3 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; DAIICHI PHARMACEUTICAL CO., LTD.; EP1591443; (2005); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

The important role of 19235-89-3

At the same time, in my other blogs, there are other synthetic methods of this type of compound,19235-89-3, 4-Chloropyridine-2-carbonitrile, and friends who are interested can also refer to it.

Synthetic Route of 19235-89-3, Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps,and cheap raw materials. 19235-89-3, name is 4-Chloropyridine-2-carbonitrile. A new synthetic method of this compound is introduced below.

A three-neck, 3L round bottomed flask fitted with a mechanical stirrer and a reflux condersor was charged with 4-aminophenol (41.35 g, 0.38 mol) and N5N- dimethylacetamide (500 mL). The resulting solution was degassed with bubbling nitrogen before potassium tert-butoxide was added portionwise (44.54 g, 0.40 mol). The solution became green at first, then became an off-white suspension, to which was added 4- chloropyridine-2-carbonitrile (50.00 g, 0.36 mol) in N,N-dimethylacetamide (300 mL) in one portion. The mixture turned brown within minutes and it was heated to 900C overnight. In the next morning, the mixture was cooled to rt and the solvent was removed under vacuum. The resulting residue was partitioned between water (1.5 L) and EtOAc (1.5 L). K2CO3 was added to adjust the pH to slightly basic and the layers were separated. The aqueous layer was extracted with EtOAc (IL). The combined organic phase was dried over MgSO4, filtered and concentrated. The resulting residue was dissolved in dichloromethane and absorbed onto a plug of silica gel (~ 1 kg). It was then eluted with 25% to 75% EtOAc in hexanes to afford 4-(4-aminophenoxy)pyridine-2-carbonitrile (18.9 g, 25%): 1H NMR (DMSO-^5) delta ppm 8.48 (d, IH), 7.51 (d, IH), 7.04 (dd, IH), 6.83 (dd, 2H), 6.60 (dd, 2H), 5.18 (s, 2H); MS ES 212 (M+H), RT 0.97 min.

At the same time, in my other blogs, there are other synthetic methods of this type of compound,19235-89-3, 4-Chloropyridine-2-carbonitrile, and friends who are interested can also refer to it.

Reference:
Patent; BAYER PHARMACEUTICALS CORPORATION; WO2006/110763; (2006); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

The important role of 4-Chloropyridine-2-carbonitrile

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 19235-89-3, 4-Chloropyridine-2-carbonitrile, other downstream synthetic routes, hurry up and to see.

Reference of 19235-89-3 ,Some common heterocyclic compound, 19235-89-3, molecular formula is C6H3ClN2, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

A teflon capped vial was charged with 4-amino-3- fluorophenol (0.291 g, 2.29 mmol) and anhydrous DMF (2.3 mL). The resultant solution was de-gassed in vacuo and backfilled with argon (3x). The vial was treated with sodium te/ -butoxide (0.27 g, 2.41 mmol) under argon and quickly capped. The reaction mixture was stirred at RT for lh. After addition of 4-chloropicolinonitrile (0.317 g, 2.29 mmol) and K2CO3 (0.174 g, 1.26 mmol), the vial was de-gassed again and heated in a 90 C oil bath overnight. The reaction mixture was diluted with EtOAc (60 mL) and washed with brine (25 mL). The aqueous phase was back-extracted with EtOAc (50 mL). The combined organic layers were washed with brine (25 mL), dried (MgSO^, concentrated in vacuo and purified by chromatography to afford 4-(4-amino-3- fluorophenoxy)picolinonitrile (0.162 g, 31% yield) as a colorless oil. FontWeight=”Bold” FontSize=”10″ H NMR (DMSO- d6) delta 8.56 (d, J = 5.6 Hz, 1H), 7.62 (d, J = 2.0 Hz, 1H), 7.14 (dd, J = 6.0 , 2.8 Hz, 1H), 7.03 (dd, J = 1 1.6, 2.4 Hz, 1H), 6.88-6.77 (m, 2H), 5.25 (s, 2H); MS (ESI) m z: 230.0 (M+H+).

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 19235-89-3, 4-Chloropyridine-2-carbonitrile, other downstream synthetic routes, hurry up and to see.

Reference:
Patent; DECIPHERA PHARMACEUTICALS, LLC; FLYNN, Daniel L.; PETILLO, Peter A.; KAUFMAN, Michael D.; WO2013/36232; (2013); A2;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

The important role of 19235-89-3

With the rapid development of chemical substances, we look forward to future research findings about 19235-89-3.

The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 19235-89-3, name is 4-Chloropyridine-2-carbonitrile. This compound has unique chemical properties. The synthetic route is as follows. Formula: C6H3ClN2

(E)-N-(4-Chloro-3-(trifluoromethyl)phenyl)-3-(3-hydroxyphenyl)-2-methylacrylamide (1.0 g, 2.81 mmol), 4-chloropicolinonitrile (428 mg, 3.09 mmol) and cesium carbonate (2.75 g, 8.43 mmol) were combined and stirred in DMF. The reaction mixture was heated at 100 C. overnight and then cooled to rt. The mixture was filtered to remove cesium carbonate, the collected precipitate was washed with EtOAc, and the combined filtrate was concentrated. Purification by column chromatography (SiO2, 0-80% EtOAc in hexanes) provided the title compound (883 mg). LCMS, FA: Rt=2.15 min, [MH+ 458.0].

With the rapid development of chemical substances, we look forward to future research findings about 19235-89-3.

Reference:
Patent; Millennium Pharmaceuticals, Inc.; US2006/160803; (2006); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Simple exploration of 19235-89-3

With the rapid development of chemical substances, we look forward to future research findings about 19235-89-3.

As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 19235-89-3, name is 4-Chloropyridine-2-carbonitrile, molecular formula is C6H3ClN2, The compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below. Product Details of 19235-89-3

Step A Nitrile I (60 g, 0.42 mol) is dissolved in THF (1000 ml) in a 2 l three-necked flask fitted with stirrer and thermometer under an N2 protective-gas atmosphere and cooled to 0 C. by means of an ice bath. Commercially available MeMgl (200 ml of a 3 M solution in THF, 0.6 mmol) is slowly added over the course of about 45 min. A clear, dark solution initially forms. The dropwise addition rate of the MeMgl addition is adjusted so that the solution temperature in the reaction vessel is between 0-10 C. When all the Grignard reagent has been added, a green suspension is obtained, which is stirred at 0 C. for a further 2 h. The reaction mixture is then added to ice-water (1500 ml). 2 M HCl is added until the reaction mixture has an approx. pH2. The mixture is stirred for a further 15 min. and then extracted a number of times (addition of EtOAc and water). The combined organic phases are washed with aqueous saturated sodium chloride solution and dried using Na2SO4. All the solvents are removed by distillation under reduced pressure in a rotary evaporator, giving 66 g of yellow-brown oil as crude product. The crude product is purified by means of column chromatography (800 g of Si60, MTBE). The suitable fractions (characterised by TLC analysis) are combined. Removal of the solvents gives ketone II (51 g, 0.32 mol, 76% yield) as clear dark oil. LC-MS: tR=1.829 min (UV=220 nm), tR=1.842 min. (TIC, with [M+H]+=156); 1H NMR (300 MHz, CDCl3) delta 8.58 (d, 1H), 8.03 (dd, J=2.1, 0.4, 1H), 7.47 (dd, J=5.2, 2.1, 1H), 2.71 (d, J=3.2, 3H).

With the rapid development of chemical substances, we look forward to future research findings about 19235-89-3.

Reference:
Patent; MERCK PATENT GESELLSCHAFT MIT BESCHRANKTER HAFTUNG; US2012/220587; (2012); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

The origin of a common compound about 19235-89-3

According to the analysis of related databases, 19235-89-3, the application of this compound in the production field has become more and more popular.

Application of 19235-89-3, Adding some certain compound to certain chemical reactions, such as: 19235-89-3, name is 4-Chloropyridine-2-carbonitrile,molecular formula is C6H3ClN2, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 19235-89-3.

To a stirred solution of cyclohexanol (2.84 g, 3.00 mL, 2.84 mmol) in 1-methyl-2-pyrrolidinone (20 mL) was added sodium hydride (1.19 g of 60% dispersion, 29.8 mmol) in small portions over 5 minutes. After stirring for an additional 5 minutes, 2-chloro-4-cyanopyridine (3.75 g, 27.0 mmol) was added and the resulting red-brown solution was heated at 100 C. for 10 minutes. The reaction mixture then was poured onto ice. The mixture was diluted with water and extracted with ether. The combined organic phases were washed with water and brine, dried (magnesium sulfate) and concentrated to provide a yellow oil. Flash chromatography over silica (hexanes/ethyl acetate) afforded 4.17 g (76%) of the desired product as a cloudy oil which solidified on standing: 1H NMR (CDCl3) delta 8.44 (d, J=5.8 Hz, 1H), 7.17 (d, J=2.4 Hz, 1H), 6.95 (dd, J=2.4, 5.8 Hz, 1H), 4.40-4.33 (m, 1H), 1.98-1.95 (m, 2H), 1.82-1.79 (m, 2H), 1.60-1.52 (m, 3H), 1.45-1.32 (m, 3H) ppm. 13C NMR (CDCl3) delta 164.3, 152.2, 135.0, 117.3, 116.4, 113.9, 76.4, 31.1, 25.2, 23.4 ppm.

According to the analysis of related databases, 19235-89-3, the application of this compound in the production field has become more and more popular.

Reference:
Patent; Genzyme Corporation; US2005/176761; (2005); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Application of 19235-89-3

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 19235-89-3, 4-Chloropyridine-2-carbonitrile.

Electric Literature of 19235-89-3, The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 19235-89-3, name is 4-Chloropyridine-2-carbonitrile. This compound has unique chemical properties. The synthetic route is as follows.

To isopropanol (30.0 mL) was added sodium hydride (0.606 g of 60% dispersion, 15.2 mmol) in small portions over 5 minutes. The resulting gel-like suspension was stirred for an additional 5 minutes at room temperature. 2-Chloro-4-cyanopyridine (2.00 g, 14.4 mmol) was then added in one portion and the resulting solution was heated to reflux. After 1 hour, the reaction mixture was allowed to cool to room temperature. The mixture was diluted with water and extracted with ethyl acetate. The organic phase was washed with water and brine, dried (magnesium sulfate) and concentrated to provide a yellow oil. Flash chromatography over silica (hexanes/ethyl acetate) afforded 1.25 g (53%) of product as a colorless oil: 1H NMR (CDCl3) delta 8.27 (d, J=5.2 Hz, 1H), 7.01 (dd, J=5.2, 1.4 Hz, 1H), 6.91 (d, J=1.4 Hz, 1H), 5.31 (sept, J=6.2 Hz, 1H), 3.33 (d, J=6.2 Hz, 6H) ppm.

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 19235-89-3, 4-Chloropyridine-2-carbonitrile.

Reference:
Patent; Genzyme Corporation; US2005/176761; (2005); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Application of 19235-89-3

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 19235-89-3, 4-Chloropyridine-2-carbonitrile.

Electric Literature of 19235-89-3, The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 19235-89-3, name is 4-Chloropyridine-2-carbonitrile. This compound has unique chemical properties. The synthetic route is as follows.

To isopropanol (30.0 mL) was added sodium hydride (0.606 g of 60% dispersion, 15.2 mmol) in small portions over 5 minutes. The resulting gel-like suspension was stirred for an additional 5 minutes at room temperature. 2-Chloro-4-cyanopyridine (2.00 g, 14.4 mmol) was then added in one portion and the resulting solution was heated to reflux. After 1 hour, the reaction mixture was allowed to cool to room temperature. The mixture was diluted with water and extracted with ethyl acetate. The organic phase was washed with water and brine, dried (magnesium sulfate) and concentrated to provide a yellow oil. Flash chromatography over silica (hexanes/ethyl acetate) afforded 1.25 g (53%) of product as a colorless oil: 1H NMR (CDCl3) delta 8.27 (d, J=5.2 Hz, 1H), 7.01 (dd, J=5.2, 1.4 Hz, 1H), 6.91 (d, J=1.4 Hz, 1H), 5.31 (sept, J=6.2 Hz, 1H), 3.33 (d, J=6.2 Hz, 6H) ppm.

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 19235-89-3, 4-Chloropyridine-2-carbonitrile.

Reference:
Patent; Genzyme Corporation; US2005/176761; (2005); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem