Kaburaki, Soyoko’s team published research in Geriatrics & gerontology international in 22 | CAS: 21829-25-4

Geriatrics & gerontology international published new progress about 21829-25-4. 21829-25-4 belongs to pyridine-derivatives, auxiliary class Membrane Transporter/Ion Channel,Calcium Channel, name is Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, and the molecular formula is C17H18N2O6, Related Products of pyridine-derivatives.

Kaburaki, Soyoko published the artcileHepatic drug metabolism in older people with body composition changes., Related Products of pyridine-derivatives, the publication is Geriatrics & gerontology international (2022), 22(5), 449-454, database is MEDLINE.

AIM: Dosage adjustment is essential in older individuals because they are prone to experience a decline in liver function and changes in body composition. However, quantitative tests or equations for evaluating the activity of hepatic drug metabolism have not yet been clearly established. We examined hepatic drug metabolism activities in older individuals, focusing on changes in body composition parameters. METHODS: Lansoprazole and nifedipine, substrates of the metabolic enzymes cytochrome P450 (CYP) 2C19 and 3A4, respectively, were selected to study hepatic drug metabolism. Residual samples from blood test for older patients were evaluated to determine drug metabolism. The body composition of relevant patients was determined by analyzing characteristic parameters of skeletal muscle mass index (SMI), handgrip strength (HGS) and hepatic steatosis index (HSI). The differences in hepatic drug metabolism were studied statistically among categories in terms of the cut-off value of these parameters. RESULTS: Older male patients receiving lansoprazole and nifedipine in the low SMI (<7.0 kg/m2 ) category showed an 85-90% reduction in respective CYP2C19 and CYP3A4 metabolic activities compared with the normal SMI category. For the female patients, CYP2C19 and CYP3A4 metabolic activities showed no significant correlation with SMI and HGS. Fatty liver disease (HSI ≥36) was found to reduce CYP2C19 metabolic activity particularly in older female patients. CONCLUSIONS: Low CYP2C19 metabolic activity was statistically correlated with low SMI in male patients and high HSI in female patients, whereas low CYP3A4 metabolic activity was statistically correlated with low HGS in male patients. Geriatr Gerontol Int 2022; 22: 449-454.

Geriatrics & gerontology international published new progress about 21829-25-4. 21829-25-4 belongs to pyridine-derivatives, auxiliary class Membrane Transporter/Ion Channel,Calcium Channel, name is Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, and the molecular formula is C17H18N2O6, Related Products of pyridine-derivatives.

Referemce:
https://en.wikipedia.org/wiki/Pyridine,
Pyridine | C5H5N – PubChem

Naito, Yasuyuki’s team published research in Acta Biomaterialia in 140 | CAS: 21829-25-4

Acta Biomaterialia published new progress about 21829-25-4. 21829-25-4 belongs to pyridine-derivatives, auxiliary class Membrane Transporter/Ion Channel,Calcium Channel, name is Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, and the molecular formula is C17H18N2O6, Safety of Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate.

Naito, Yasuyuki published the artcileConstructing vascularized hepatic tissue by cell-assembled viscous tissue sedimentation method and its application for vascular toxicity assessment, Safety of Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, the publication is Acta Biomaterialia (2022), 275-288, database is CAplus and MEDLINE.

In vitro Construction of the liver sinusoidal structure using artificial tissue is an important but worthwhile challenge, particularly for assessing the risk of diseases such as sinusoidal obstruction syndrome (SOS). Current models are unsuitable for evaluating the toxicity because of lacking sinusoidal capillary. In this study, we developed a vascularized hepatic tissue (VHT) using a unique tissue engineering technique, the cell assembled viscous tissue by sedimentation (CAViTs) method. The “viscous bodies” created using the CAViTs method exhibited significant self-assembly within 6 h after seeding, promoting cell-cell interaction. The level of albumin secreted by the VHT was four times higher than that of 2D-coculture and maintained for 1 mo. The gene expression pattern of the VHT was closer to that of total human liver, compared with the 2D system. Quant. evaluations of the vascular structure of VHT treated with two typical SOS-inducing compounds, monocrotaline and retrorsine, revealed higher sensitivity (IC50 = 40.35μM), 19.92 times higher than the cell-viability assay. Thus, VHT represents an innovative in vitro model that mimics the vessel network structure and could become a useful tool for the early screening of compounds associated with a risk of vascular toxicity. Mimicking sinusoidal structures in in vitro liver model is important to consider from the perspective of predicting hepatotoxicity such like sinusoidal obstruction syndrome (SOS). However, it was difficult to reconstruct the vascular structure within the hepatocyte-rich environment. In this study, we constructed a vascularized hepatic tissue in a high-throughput manner by a unique method using collagen and heparin, and evaluated its applicability to toxicity assessment. Vessel morphol. anal. of the model treated by monocrotaline, which is a well-known SOS-inducing compound, could predict the toxicity with higher sensitivity. To the best of our knowledge, this is the first report to provide vascularized hepatic tissues using sinusoidal endothelial cells at least for demonstrating applicability to the evaluation of SOS induction risk.

Acta Biomaterialia published new progress about 21829-25-4. 21829-25-4 belongs to pyridine-derivatives, auxiliary class Membrane Transporter/Ion Channel,Calcium Channel, name is Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, and the molecular formula is C17H18N2O6, Safety of Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate.

Referemce:
https://en.wikipedia.org/wiki/Pyridine,
Pyridine | C5H5N – PubChem

Hong, Bing’s team published research in Science of the Total Environment in 817 | CAS: 21829-25-4

Science of the Total Environment published new progress about 21829-25-4. 21829-25-4 belongs to pyridine-derivatives, auxiliary class Membrane Transporter/Ion Channel,Calcium Channel, name is Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, and the molecular formula is C17H18N2O6, Quality Control of 21829-25-4.

Hong, Bing published the artcileSedimentary spectrum and potential ecological risks of residual pharmaceuticals in relation to sediment-water partitioning and land uses in a watershed, Quality Control of 21829-25-4, the publication is Science of the Total Environment (2022), 152979, database is CAplus and MEDLINE.

Pharmaceutical residues in river surficial sediment are prone to anthropogenic impacts and environmental factors in watershed, but the mechanisms remain unclear. This study attempted to reveal surficial sediment-water pseudo-partitioning and anthropogenic (land use) patterns of pharmaceutical residues in surficial sediment among 23 subwatersheds of Jiulong River, southeast China with a gradient of urban land use percentile in dry and wet seasons. Thirty-eight out of target 86 compounds from six-category pharmaceuticals were quantified and ranged from below the quantification limits (0.001 mg kg-1 dry mass) up to 8.19 mg kg-1 dry mass (chlortetracycline) using a developed SPE-HPLC-MS/MS protocol. Antibiotics and non-steroidal anti-inflammatory drugs (NSAIDs) collectively dominated sedimentary pharmaceutical residues for 34.5-99.8% of the total quantified compounds (median at 92%). Land uses in subwatersheds showed high consistency with sedimentary pharmaceutical residues in the dry season rather than the wet season, especially for human use only and veterinary use only compounds Surficial sediment-water partitioning of pharmaceutical compounds influenced their sedimentary residues regardless of season, which were determined by properties of compound and surficial sediment interactively. All tetracycline compounds, trimethoprim (sulfonamides synergist), caffeine (central nervous system drug), and oxfendazole (antiparasitic drug) were quantified to pose high potential ecol. risks to aquatics. Findings of this study suggest that pseudo-persistent legacy of human and veterinary pharmaceuticals requires a wider coverage of pharmaceutical compounds for a comprehensive ecol. assessment in the environment and more involvement of anthropogenic impacts and socioeconomic factors in the future studies.

Science of the Total Environment published new progress about 21829-25-4. 21829-25-4 belongs to pyridine-derivatives, auxiliary class Membrane Transporter/Ion Channel,Calcium Channel, name is Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, and the molecular formula is C17H18N2O6, Quality Control of 21829-25-4.

Referemce:
https://en.wikipedia.org/wiki/Pyridine,
Pyridine | C5H5N – PubChem

Motomura, Naoki’s team published research in Journal of Steroid Biochemistry and Molecular Biology in 218 | CAS: 21829-25-4

Journal of Steroid Biochemistry and Molecular Biology published new progress about 21829-25-4. 21829-25-4 belongs to pyridine-derivatives, auxiliary class Membrane Transporter/Ion Channel,Calcium Channel, name is Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, and the molecular formula is C17H18N2O6, Recommanded Product: Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate.

Motomura, Naoki published the artcileVisualization of calcium channel blockers in human adrenal tissues and their possible effects on steroidogenesis in the patients with primary aldosteronism (PA), Recommanded Product: Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, the publication is Journal of Steroid Biochemistry and Molecular Biology (2022), 106062, database is CAplus and MEDLINE.

Voltage-gated L-type calcium channel (CaV) isoforms are well known to play pivotal tissue-specific roles not only in vasoconstriction but also in adrenocortical steroidogenesis including aldosterone biosynthesis. Alpha-1C subunit calcium channel (CC) (CaV1.2) is the specific target of anti-hypertensive CC blockers (CCBs) and its Alpha-1D subunit (CaV1.3) regulates depolarization of cell membrane in aldosterone-producing cells. Direct effects of CCBs on aldosterone biosynthesis were previously postulated but their intra-adrenal distribution and effects on steroid production in primary aldosteronism (PA) patients have remained virtually unknown. In this study, frozen tissue specimens constituting tumor, adjacent adrenal gland and peri-adrenal adipose tissues of nine aldosterone-producing adenoma (APA) cases were examined for visualization of amlodipine and aldosterone themselves using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Liquid chromatog.-mass spectrometry (LC-MS) anal. was also performed to quantify amlodipine and 17 adrenal steroids in those cases above and compared the findings with immunohistochem. anal. of steroidogenic enzymes and calcium channels (CaV1.2 and CaV1.3). Effects of amlodipine on mRNA level of aldosterone biosynthetic enzymes were also explored using human adrenocortical carcinoma cell line (H295R). Amlodipine-specific peak (m/z 407.1 > 318.1) was detected only in amlodipine treated cases. Accumulation of amlodipine was marked in adrenal cortex compared to peri-adrenal adipose tissues but not significantly different between APA tumors and adjacent adrenal glands, which was subsequently confirmed by LC-MS quantification. Intra-adrenal distribution of amlodipine was generally consistent with that of CCs. In addition, quant. steroid profiles using LC-MS and in vitro study demonstrated the lower HSD3B activities in amlodipine treated cases. Immunoreactivity of CaV1.2 and HSD3B2 were also correlated. We report the first demonstration of specific visualization of amlodipine in human adrenal tissues by MALDI-MSI. Marked amlodipine accumulation in the adrenal glands suggested its direct effects on steroidogenesis in PA patients, possibly targeting on CaV1.2 and suppressing HSD3B activity.

Journal of Steroid Biochemistry and Molecular Biology published new progress about 21829-25-4. 21829-25-4 belongs to pyridine-derivatives, auxiliary class Membrane Transporter/Ion Channel,Calcium Channel, name is Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, and the molecular formula is C17H18N2O6, Recommanded Product: Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate.

Referemce:
https://en.wikipedia.org/wiki/Pyridine,
Pyridine | C5H5N – PubChem

Jahed, Zeinab’s team published research in Nature Communications in 13 | CAS: 21829-25-4

Nature Communications published new progress about 21829-25-4. 21829-25-4 belongs to pyridine-derivatives, auxiliary class Membrane Transporter/Ion Channel,Calcium Channel, name is Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, and the molecular formula is C17H18N2O6, Recommanded Product: Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate.

Jahed, Zeinab published the artcileNanocrown electrodes for parallel and robust intracellular recording of cardiomyocytes, Recommanded Product: Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, the publication is Nature Communications (2022), 13(1), 2253, database is CAplus and MEDLINE.

Drug-induced cardiotoxicity arises primarily when a compound alters the electrophysiol. properties of cardiomyocytes. Features of intracellular action potentials (iAPs) are powerful biomarkers that predict proarrhythmic risks. In the last decade, a number of vertical nanoelectrodes have been demonstrated to achieve parallel and minimally-invasive iAP recordings. However, the large variability in success rate and signal strength have hindered nanoelectrodes from being broadly adopted for proarrhythmia drug assessment. In this work, we develop vertically-aligned nanocrown electrodes that are mech. robust and achieve > 99% success rates in obtaining intracellular access through electroporation. We validate the accuracy of nanocrown electrode recordings by simultaneous patch clamp recording from the same cell. Finally, we demonstrate that nanocrown electrodes enable prolonged iAP recording for continual monitoring of the same cells upon the sequential addition of four incremental drug doses. Our technol. development provides an advancement towards establishing an iAP screening assay for preclin. evaluation of drug-induced arrhythmogenicity.

Nature Communications published new progress about 21829-25-4. 21829-25-4 belongs to pyridine-derivatives, auxiliary class Membrane Transporter/Ion Channel,Calcium Channel, name is Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, and the molecular formula is C17H18N2O6, Recommanded Product: Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate.

Referemce:
https://en.wikipedia.org/wiki/Pyridine,
Pyridine | C5H5N – PubChem

Wu, Tianshu’s team published research in Particle and Fibre Toxicology in 19 | CAS: 21829-25-4

Particle and Fibre Toxicology published new progress about 21829-25-4. 21829-25-4 belongs to pyridine-derivatives, auxiliary class Membrane Transporter/Ion Channel,Calcium Channel, name is Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, and the molecular formula is C11H7ClFNO3, Recommanded Product: Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate.

Wu, Tianshu published the artcileNitrogen-doped graphene quantum dots induce ferroptosis through disrupting calcium homeostasis in microglia, Recommanded Product: Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, the publication is Particle and Fibre Toxicology (2022), 19(1), 22, database is CAplus and MEDLINE.

Along with the wild applications of nitrogen-doped graphene quantum dots (N-GQDs) in the fields of biomedicine and neuroscience, their increasing exposure to the public and potential biosafety problem has gained more and more attention. Unfortunately, the understanding of adverse effects of N-GQDs in the central nervous system (CNS), considered as an important target of nanomaterials, is still limited. After we found that N-GQDs caused cell death, neuroinflammation and microglial activation in the hippocampus of mice through the ferroptosis pathway, microglia was used to assess the mol. mechanisms of N-GQDs inducing ferroptosis because it could be the primary target damaged by N-GQDs in the CNS. The microarray data suggested the participation of calcium signaling pathway in the ferroptosis induced by N-GQDs. In microglial BV2 cells, when the calcium content above the homeostatic level caused by N-GQDs was reversed, the number of cell death, ferroptosis alternations and excessive inflammatory cytokines release were all alleviated. Two calcium channels of L-type voltage-gated calcium channels (L-VGCCs) in plasma membrane and ryanodine receptor (RyR) in endoplasmic reticulum (ER) took part in N-GQDs inducing cytosolic calcium overload. L-VGCCs and RyR calcium channels were also involved in promoting the excess iron influx and triggering ER stress response, resp., which both exert excessive ROS generation and result in the ferroptosis and inflammation in BV2 cells. N-GQDs exposure caused ferroptosis and inflammatory responses in hippocampus of mice and cultured microglia through activating two calcium channels to disrupt intracellular calcium homeostasis. The findings not only posted an alert for biomedical applications of N-GQDs, but also highlighted an insight into mechanism researches of GQDs inducing multiple types of cell death in brain tumor therapy in the future.

Particle and Fibre Toxicology published new progress about 21829-25-4. 21829-25-4 belongs to pyridine-derivatives, auxiliary class Membrane Transporter/Ion Channel,Calcium Channel, name is Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, and the molecular formula is C11H7ClFNO3, Recommanded Product: Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate.

Referemce:
https://en.wikipedia.org/wiki/Pyridine,
Pyridine | C5H5N – PubChem

Darden, Carly M.’s team published research in iScience in 25 | CAS: 21829-25-4

iScience published new progress about 21829-25-4. 21829-25-4 belongs to pyridine-derivatives, auxiliary class Membrane Transporter/Ion Channel,Calcium Channel, name is Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, and the molecular formula is C17H18N2O6, Category: pyridine-derivatives.

Darden, Carly M. published the artcileCalcineurin/NFATc2 and PI3K/AKT signaling maintains β-cell identity and function during metabolic and inflammatory stress, Category: pyridine-derivatives, the publication is iScience (2022), 25(4), 104125, database is CAplus and MEDLINE.

Pancreatic islets respond to metabolic and inflammatory stress by producing hormones and other factors that induce adaptive cellular and systemic responses. Here we show that intracellular Ca2+ ([Ca2+]i) and ROS signals generated by high glucose and cytokine-induced ER stress activate calcineurin (CN)/NFATc2 and PI3K/AKT to maintain β-cell identity and function. This was attributed in part by direct induction of the endocrine differentiation gene RFX6 and suppression of several β-cell “disallowed” genes, including MCT1. CN/NFATc2 targeted p300 and HDAC1 to RFX6 and MCT1 promoters to induce and suppress gene transcription, resp. In contrast, prolonged exposure to stress, hyperstimulated [Ca2+]i, or perturbation of CN/NFATc2 resulted in downregulation of RFX6 and induction of MCT1. These findings reveal that CN/NFATc2 and PI3K/AKT maintain β-cell function during acute stress, but β-cells dedifferentiate to a dysfunctional state upon loss or exhaustion of Ca2+/CN/NFATc2 signaling. They further demonstrate the utility of targeting CN/NFATc2 to restore β-cell function.

iScience published new progress about 21829-25-4. 21829-25-4 belongs to pyridine-derivatives, auxiliary class Membrane Transporter/Ion Channel,Calcium Channel, name is Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, and the molecular formula is C17H18N2O6, Category: pyridine-derivatives.

Referemce:
https://en.wikipedia.org/wiki/Pyridine,
Pyridine | C5H5N – PubChem

Sun, Linli’s team published research in Annals of Pharmacotherapy in 56 | CAS: 21829-25-4

Annals of Pharmacotherapy published new progress about 21829-25-4. 21829-25-4 belongs to pyridine-derivatives, auxiliary class Membrane Transporter/Ion Channel,Calcium Channel, name is Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, and the molecular formula is C7H5Br2F, HPLC of Formula: 21829-25-4.

Sun, Linli published the artcileAnalysis of the Clinical Characteristics of Dipeptidyl Peptidase-4 Inhibitor-Induced Bullous Pemphigoid, HPLC of Formula: 21829-25-4, the publication is Annals of Pharmacotherapy (2022), 56(2), 205-212, database is CAplus and MEDLINE.

Objective: To analyze and discuss the clin. characteristics of dipeptidyl peptidase-4 inhibitor (DPP4i)-induced bullous pemphigoid (BP). Data Sources: We collected case reports of DPP4i-induced BP by searching databases from 2006 to mid-May 2021, as a retrospective anal. Study Selection and Data Extraction: Relevant case reports and case analyses of DPP4i-induced BP were included. Data Synthesis: The median time of symptom onset was 9 mo (range 0.5-59 mo). BP most often occurred in patients receiving vildagliptin (52.63%) followed by linagliptin (27.19%) and sitagliptin (17.54%). Tense bullae and blisters (85.51%) and erythema (82.61%) on the extremities and trunk were the most common presenting symptoms. In total, 64.06% of BP patients were anti-BP180 autoantibody pos., 58.97% were BP180NC16a autoantibody pos., and 31.25% were anti-BP230 autoantibody pos. Skin biopsy revealed subepidermal bulla eosinophil infiltration in 93.85% of BP patients, lymphocyte infiltration in 56.93%, and neutrophil infiltration in 44.62%. Direct immunofluorescence was pos. in 98.94% of BP patients with linear deposition of IgG (97.80%) and/or complement C3 (98.94%) along the basement membrane zone. Indirect immunofluorescence was pos. in 87.88% of BP patients. Complete remission of BP was achieved in 83.64% of patients on DPP4i withdrawal and after 4 mo (range 0.13-72 mo) of follow-up. Relevance to Patient Care and Clin. Practice: This review analyzes and discusses the clin. characteristics of DPP4i-induced BP and provides a reference for the safe and reasonable clin. application of DPP4i. DPP4i drugs are related to the occurrence of BP in diabetic patients, especially elderly men taking vildagliptin.

Annals of Pharmacotherapy published new progress about 21829-25-4. 21829-25-4 belongs to pyridine-derivatives, auxiliary class Membrane Transporter/Ion Channel,Calcium Channel, name is Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, and the molecular formula is C7H5Br2F, HPLC of Formula: 21829-25-4.

Referemce:
https://en.wikipedia.org/wiki/Pyridine,
Pyridine | C5H5N – PubChem

Phan, Thieu X.’s team published research in Journal of Physiology (Oxford, United Kingdom) in 600 | CAS: 21829-25-4

Journal of Physiology (Oxford, United Kingdom) published new progress about 21829-25-4. 21829-25-4 belongs to pyridine-derivatives, auxiliary class Membrane Transporter/Ion Channel,Calcium Channel, name is Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, and the molecular formula is C17H18N2O6, Name: Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate.

Phan, Thieu X. published the artcileTRPV1 in arteries enables a rapid myogenic tone, Name: Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, the publication is Journal of Physiology (Oxford, United Kingdom) (2022), 600(7), 1651-1666, database is CAplus and MEDLINE.

Arterioles maintain blow flow by adjusting their diameter in response to changes in local blood pressure. In this process called the myogenic response, a vascular smooth muscle mechanosensor controls tone predominantly through altering the membrane potential. In general, myogenic responses occur slowly (minutes). In the heart and skeletal muscle, however, tone is activated rapidly (tens of seconds) and terminated by brief (100 ms) arterial constrictions. Previously, we identified extensive expression of TRPV1 in the smooth muscle of arterioles supplying skeletal muscle, heart and fat. Here we reveal a critical role for TRPV1 in the rapid myogenic tone of these tissues. TRPV1 antagonists dilated skeletal muscle arterioles in vitro and in vivo, increased coronary flow in isolated hearts, and transiently decreased blood pressure. All of these pharmacol. effects were abolished by genetic disruption of TRPV1. Stretch of isolated vascular smooth muscle cells or raised intravascular pressure in arteries triggered Ca2+ signalling and vasoconstriction. The majority of these stretch-responses were TRPV1-mediated, with the remaining tone being inhibited by the TRPM4 antagonist, 9-phenantrol. Notably, tone developed more quickly in arteries from wild-type compared with TRPV1-null mice. Furthermore, the immediate vasodilation following brief constriction of arterioles depended on TRPV1, consistent with a rapid deactivation of TRPV1. Pharmacol. experiments revealed that membrane stretch activates phospholipase C/protein kinase C signalling combined with heat to activate TRPV1, and in turn, L-type Ca2+ channels. These results suggest a critical role, for TRPV1 in the dynamic regulation of myogenic tone and blood flow in the heart and skeletal muscle.

Journal of Physiology (Oxford, United Kingdom) published new progress about 21829-25-4. 21829-25-4 belongs to pyridine-derivatives, auxiliary class Membrane Transporter/Ion Channel,Calcium Channel, name is Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, and the molecular formula is C17H18N2O6, Name: Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate.

Referemce:
https://en.wikipedia.org/wiki/Pyridine,
Pyridine | C5H5N – PubChem

Guo, Changchuan’s team published research in Se pu = Chinese journal of chromatography in 40 | CAS: 21829-25-4

Se pu = Chinese journal of chromatography published new progress about 21829-25-4. 21829-25-4 belongs to pyridine-derivatives, auxiliary class Membrane Transporter/Ion Channel,Calcium Channel, name is Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, and the molecular formula is C17H18N2O6, Recommanded Product: Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate.

Guo, Changchuan published the artcile[Determination of trace genotoxic impurities in nifedipine by ultra high performance liquid chromatography-electrostatic field orbitrap high resolution mass spectrometry]., Recommanded Product: Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, the publication is Se pu = Chinese journal of chromatography (2022), 40(3), 266-272, database is MEDLINE.

A method based on ultra high performance liquid chromatography-electrostatic field orbitrap high resolution mass spectrometry (UHPLC-Orbitrap HRMS) was established for the determination of genotoxic impurities 2, 6, and 12 in nifedipine. After extraction with methanol, the sample was injected into the UHPLC-Orbitrap HRMS system for analysis. An ACE EXCELTM 3 C18-AR column (150 mm×4.6 mm, 3 μm) was used for chromatographic separation. The mobile phase was methanol-0.1% formic acid aqueous solution (65âˆ?5, v/v). The flow rate was 0.6 mL/min, while the column temperature and autosampler temperature were set as 35 â„?and 8 â„? respectively. The divert valve switching technique was used to protect the mass spectrometer. The six-way valve was set to divert the eluent of 7.5-11.6 min to waste and the rest of the eluent into the mass spectrometer. The Orbitrap mass spectrometer was coupled with the UHPLC system by an electrospray ion (ESI) source. The sheath gas and auxiliary gas flow rates were 60 and 20 arb (arbitrary units), respectively. The spray voltage was 3.5 kV, while the capillary temperature and auxiliary gas heater temperature were set as 350 â„?and 400 â„? respectively. The positive ion parallel reaction monitoring (PRM) scanning mode was adopted, and the mass spectral resolution was set to 35000 FWHM. The accurate masses of the [M+H]+ precursor ions of impurities 2, 6, and 12 were m/z 347.1230, 361.1026, and 347.1230, respectively. The accurate masses of the extracted [M+H]+ fragment ions of impurities 2, 6, and 12 were m/z 315.0968, 298.1069, and 315.0968, respectively. The normalized collision energies (NCEs) were optimized to 10%, 42%, and 10% for impurities 2, 6, and 12, respectively. The external standard method was utilized for quantitative analysis. The established method was validated in detail by investigating the specificity, linear range, limit of detection (LOD), limit of quantification (LOQ), recovery, precision, and stability. This method had good specificity, and the solvent did not interfere with the determination of impurities. The peak areas of impurities 2, 6, and 12 as well as their concentrations showed good linear relationships in the ranges of 0.2-100 ng/mL, with all correlation coefficients (r)â‰?.9998. The recoveries of impurities 2, 6, and 12 at three levels (low, medium, and high) were in the range of 96.9%-105.0%, while the RSDs were between 1.21% and 5.12%. The LODs were 0.05 ng/mL and the LOQs were 0.2 ng/mL for all three impurities. This analytical method was used to determine impurities 2, 6, and 12 in three batches of nifedipine samples. Impurity 6 was not detected in the three batches, but impurities 2 and 12 were detected in all the three samples, and the detection amount was within the limit. The developed method is sensitive, fast, accurate, and easy to operate. It can provide a reference for the quality control of nifedipine by pharmaceutical companies and extend strong technical support for the supervision by drug regulatory authorities.

Se pu = Chinese journal of chromatography published new progress about 21829-25-4. 21829-25-4 belongs to pyridine-derivatives, auxiliary class Membrane Transporter/Ion Channel,Calcium Channel, name is Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, and the molecular formula is C17H18N2O6, Recommanded Product: Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate.

Referemce:
https://en.wikipedia.org/wiki/Pyridine,
Pyridine | C5H5N – PubChem